
IBM Migration Utility for z/OS and OS/390

User’s Guide and Reference

Version 2 Release 1

SC31-8961-01

���

IBM Migration Utility for z/OS and OS/390

User’s Guide and Reference

Version 2 Release 1

SC31-8961-01

���

Second Edition (March 2005)

This edition applies to IBM Migration Utility for z/OS and OS/390, Version 2 Release 1, Program Number 5697–I89

and to any subsequent releases until otherwise indicated in new editions. Make sure you are using the correct

edition for the level of the product.

The information in this manual was furnished by Foundation Software, Inc.

This publication is available on the Web at:

http:/www.ibm.com/software/awdtools/migration

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are

not stocked at the address below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address

your comments to:

IBM Corporation

H150/090

555 Bailey Avenue

San Jose, CA

95141-1003

U.S.A.

or fax your comments from within the U.S.A., to 800-426-7773, or, from outside the U.S.A., to 408-463-2629.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright Foundation Software, Inc. 1989-2004. All rights reserved. Unauthorized use or disclosure of any part of

the system is prohibited. Foundation Software, Inc. has granted IBM a non-exclusive license to market PEngiEZT as

Migration Utility.

© Copyright International Business Machines Corporation 2002, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Note!

Before using this information and the product it supports, be sure to read the general information under

“Notices” on page 369.

Contents

About this manual vii

Who should use this manual vii

Structure of this manual vii

Using LookAt to look up message explanations . . viii

Syntax notation viii

Summary of changes xi

PTFs UK00656 and UQ93850 xi

Chapter 1. Introducing Migration Utility 1

What is supported 1

Translating concepts 2

Structure of Easytrieve programs 2

Order of statements in an Easytrieve program . . 3

Review of the Easytrieve punctuation rules 3

Chapter 2. Using Migration Utility 5

Using the one-step translating driver 5

Using Migration Utility with your existing Easytrieve

Plus jobs 6

Using Migration Utility for new programs 6

Controlling Translator listings and messages 7

Overriding ddnames in your JCL 7

Using JCL with multiple steps 8

Chapter 3. Conversion guidelines . . . 13

Using the FSYCNV50 (JCYCNV50) utility 13

FSYCNV50 run-time options 14

Input files 15

Output files 15

Using the FSYCNV55 (JCYCNV55) utility 16

Input files 16

Output files 16

Using FSYMIG20 (JCYMIG20) stand-alone compare

utility 16

Input files 16

Output files 17

A brief review of the manual Parallel Testing

process 17

The Automated Parallel Testing utility 18

Provided utility programs 18

Preparing Jobs for the Automated Parallel Testing

utility 19

Compatibility check 25

File organization support 25

SBCS and DBCS character support 25

Fixed-length records 25

NON-VSAM variable-length records 26

VSAM variable-length records 26

VSAM key usage 27

VIRTUAL files 27

Extended printer support 27

Index usage 27

Field naming conventions 28

Ambiguous field position; fields with Index and

OCCURS 28

Binary field handling 29

Assigning hex values 29

Field headings 30

Paragraph-naming conventions 30

Supporting VS COBOL and other incompatible

COBOL subroutines 30

Calling subprograms 30

Undetected errors 30

Sign of numeric fields 30

Varying-length fields 31

Uninitialized Working Storage fields 32

The MOVE statement 32

FILE-STATUS (STATUS) codes 33

Labels inside a DO and IF pair of statements . . 33

External table record length 34

JCL for converted program 34

Overlapping fields on report lines 35

Group fields for SQL/DB2 usage 35

OCCURS fields for SQL/DB2 usage 36

Packed unsigned fields 37

Solution for OCCURS 1 problem 37

Duplicate fields usage and reference 37

File ddname considerations 38

VSAM files, mixed I/O mode 38

VSE operating system issues 39

Generating standalone COBOL 39

Incompatible field masks 40

Chapter 4. Defining entities 41

Defining files 41

Supported file organizations 41

Supported sequential file record formats 41

Non-supported file organizations 41

Non-supported file attributes (these attributes are

bypassed) 41

Supported file attributes 41

Defining VSAM files 42

Defining tables 44

Defining unit record devices and sequential files . . 47

Defining Records and Working Storage 50

Chapter 5. Program instruction

reference 53

COPY statement 53

SORT Activity Section 54

JOB Activity Section 55

Synchronized file processing 56

Record availability 57

Special IF statements in synchronized process . . . 59

MATCHED 59

File existence 59

DUPLICATE, FIRST-DUP, LAST-DUP 59

Assignment statement 60

© Copyright IBM Corp. 2002, 2005 iii

|
||
||
||

 | |
 | |
 | |

MOVE statement 62

MOVE LIKE statement 66

PUT statement 66

WRITE statement 67

GET statement 68

READ statement 68

POINT statement 69

SEARCH statement 70

PERFORM statement 70

DISPLAY statement 71

CALL statement 73

GOTO statement 74

STOP statement 75

CASE, WHEN, OTHERWISE and END-CASE

statements 76

DO and END-DO statements 76

IF, ELSE, and END-IF statements 77

Conditional expressions 78

PRINT statement 82

PROC and END-PROC statements 82

RETRIEVE statement 83

SELECT statement (SORT and REPORT selection) 83

System-defined fields 84

Easytrieve reserved keywords 87

REPORT statement 88

SEQUENCE statement 91

CONTROL statement 91

SUM statement 92

HEADING statement 93

TITLE statement 93

LINE statement 94

Report exits 95

Native COBOL support 96

Support for COBOL and PEngi Functions in

ASSIGN statement 100

Generating rules 100

INSPECT VREPLACING statement 100

Easytrieve macros 103

Invoking macros 105

Chapter 6. SQL/DB2 support 107

Translating concepts 107

Example: DECLGEN of a DB2 table 107

Native SQL statements 109

Automatic cursor management 109

Easytrieve file defined as an SQL file 109

Automatic retrieval without a file 109

SQL statements syntax rules 109

PARM statement parameters 110

Running SQL programs in STATIC mode . . . 110

Running SQL programs in Dynamic mode . . . 110

Library Section for SQL processing 112

SQL catalog INCLUDE facility 113

When to use SQL INCLUDE 113

Processing nullable fields 113

SQL data types 114

SQL syntax checking 114

System-defined fields 114

EOF processing 114

Communication Area fields 114

Easytrieve Plus SQL files 114

Using DEFER with SELECT 115

Multiple tables 116

Controlled processing 116

Automatic retrieval without a file 116

Native SQL processing 117

Chapter 7. SQL File I/O statement

reference 119

CLOSE statement 119

DELETE statement 119

FETCH statement 120

SQL INCLUDE statement 120

INSERT statement 122

UPDATE statement 122

SELECT statement 122

Chapter 8. DLI/IMS support 125

IMS/DLI concepts 125

Translating DLI/IMS programs 126

Summary of supported features 126

Summary of unsupported features 126

FILE definition 127

Parameters 127

Example 127

RECORD definition 127

Parameters 127

Example 128

RETRIEVE statement 128

DLI statement 130

Format-1: DLI application I/O calls 130

Format-2: Basic checkpoint 131

Format-3: Symbolic checkpoint 131

Format-4: Extended restart 132

DLI FOR ACCESS statement 133

Format-1 133

DLI program examples 133

Example 1—Sweep of database using

RETRIEVE statements 133

Example 2—Sweep of database using controlled

DLI statements 134

Chapter 9. Creating HTML and

spreadsheet files 137

Character Separated Value (CSV) files and reports 137

HTML Drill Down reports 138

Concepts 138

Defining Drill Down documents 140

Defining Drill Down Reports 141

Insert character for CSV reports 141

HTML document type 142

Link identifier for PREV and NEXT buttons . . 142

Templates and attributes 143

REPORT statement considerations 143

CONTROL statement considerations 144

EZPARAMS/EASYTRAN options 144

Field attributes 144

HEADING attributes 144

REPORT SEQUENCE and performance issues 144

Defining field attributes 145

Attributes syntax 145

iv Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

||
||

 | |
 | |

 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |

Available Attributes 146

Drill Down JCL requirements 148

FJIDOC0—Cascading Style Sheet (CSS) library 148

ddname for the Drill Down documents 149

ddname for the report files 149

ddnames for the index/links validator program 149

HFS (UNIX files) requirements 150

Tailoring the FSYFONTS table 151

Running the Drill Down document

parser—fsyjpars 152

JCYUNIX0 (FSYUNIX0)—Drill Down utility for

UNIX files 152

JCMUDRL1—Drill Down reports program . . . 154

JCMUDRL2—Creates a CSV file and a CSV report 161

JCMUDRLU—Drill Down reports and UNIX

environment 165

Chapter 10. User exits 173

End of translating macro exit 173

File I/O Exits 173

Exit calling conventions 173

MODIFY Exits 174

Non-MODIFY Exits 174

CBLCNVRT macro 175

Running a standalone job to do the conversion. 175

Coding CBLCNVRT in Easytrieve Plus

programs. 176

EZTCNVRT macro 177

Generating COBOL COPY statements 178

System information 180

Migration Utility files 180

Run-time requirements 181

Summary of ddnames 182

Translator CCL1 preprocessor options 183

Chapter 11. Installation and Migration

Utility options 185

Installation 185

Migrating from Version 1 185

Tailoring default PROC for the One-Step driver

program 186

Activating the FSYTPA00 program 187

Activating Call Attachment Facility (CAF) for DB2

users 188

Generating Dynamic SQL I/O module (FSYSQLIO) 191

Using EZTPA00 program loader 192

REPORT statement default options 192

Mask identifier table to facilitate Easytrieve

USERMASK 194

Migration Utility translator options 194

Embedding options in the program source . . . 205

COBOL Compiler PROCESS options 206

Chapter 12. Dynamic I/O mode and

PDS/PDSE support 209

Dynamic I/O mode 209

How does it work? 209

Dynamic I/O considerations 209

Benefits of Dynamic I/O 210

Support for PDS/PDSE libraries 210

Guidelines for accessing PDS/PDSE libraries 210

Chapter 13. Toolkit replacement

macros 215

Toolkit and date-handling replacement macros . . 215

Macros search sequence 216

Enhanced date threshold handling 216

Available date masks 217

ALPHACON macro: coding rules 218

CONVAE macro: coding rules 218

CONVEA macro: coding rules 219

DATECALC macro: coding rules 219

DATECONV macro: coding rules 220

DATEVAL macro: coding rules 220

DAYSAGO macro: coding rules 221

DAYSCALC macro: coding rules 222

DIVIDE macro: coding rules 222

EXPO macro: coding rules 222

GETDATE macro: coding rules 223

GETDATEL macro: coding rules 223

GETDSN macro: coding rules 223

GETJOB macro: coding rules 224

GETPARM macro: coding rules 224

NUMTEST macro: coding rules 224

PARSE macro: coding rules 225

RANDOM macro: coding rules 226

SQRT macro: coding rules 226

UNBYTE macro: coding rules 226

WEEKDAY macro: coding rules 227

Chapter 14. Messages 229

Migration Utility (macro) generated error messages 232

Dynamic SQL Translator macro generated

messages 247

Migration Utility macro generated messages . . . 250

Migration Utility function generated messages . . 274

PEngiCCL generated messages 285

Parallel testing utility messages 334

Runtime I/O error messages 337

VSAM I/O error supplemental RPL information 338

Appendix. Migration Utility JCL . . . 339

JCMUCLGJ—Translate, link and go (no proc) . . . 339

JCMUCLGP—Translate, link and go (instream

proc) 340

JCMUCL1J—Translate and link (no proc) 341

JCMUCL1P—Translate and link (instream proc) 342

JCMUCL2J—Two-step translate and link without a

proc 343

JCMUCL2P—Two-step translate and link (instream

proc) 344

JCMUIMSJ—Sample job for translating IMS/DLI

programs 346

JCMUSQLJ—Two-step translate, link and bind for

SQL 347

JCMUSQLP—Two-step translate, link and bind for

SQL (using proc) 349

JCMUMIG1—Automated conversion engine . . . 351

JCMUCNV1—Automated conversion initiation job 356

Contents v

||
||
||
||
||
||
||
||
|
||
|
||
||
||
|
||

||

||

 |
 | |

JCMUMIG2—Manual conversion engine with no

restart 358

#FJICNTL—Control file for JCL adjuster program

(FSYMIG00) 360

Notices 369

Trademarks 370

Index 371

vi Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

About this manual

This manual describes how to use the IBM Migration Utility for z/OS and OS/390

licensed program, hereafter referred to as Migration Utility.

Who should use this manual

This manual is for anyone who currently has Easytrieve Plus programs and wants

to convert them to COBOL programs, or who wants to write new programs using

the Easytrieve Plus syntax. It can be used as a reference for writing programs

using Migration Utility syntax by those users who do not have Easytrieve Plus.

To use Migration Utility properly, you will need need:

v Some knowledge of job control

v Some knowledge of Easytrieve Plus. (Migration Utility does all the hard work,

so you may be able to get away with minimal knowledge of Easytrieve Plus).

Structure of this manual

Chapter 1, “Introducing Migration Utility,” on page 1 explains what Migration

Utility is, and how it works. It also proves information you only need once.

Chapter 2, “Using Migration Utility,” on page 5 gives an overview of running

Migration Utility with both existing and new Easytrieve Plus programs, and

describes how to use the one-step translating driver.

Chapter 3, “Conversion guidelines,” on page 13 describes some techniques and

utilities you can use to test your converted programs. It also points out a few

features of Easytrieve that you need to check carefully to ensure a smooth

conversion.

Chapter 4, “Defining entities,” on page 41 tells you how to define entities such as

files, tables, records, and working storage.

Chapter 5, “Program instruction reference,” on page 53 describes in detail each

Easytrieve instruction that Migration Utility supports.

Chapter 6, “SQL/DB2 support,” on page 107 and Chapter 7, “SQL File I/O

statement reference,” on page 119 describe SQL matters.

Chapter 8, “DLI/IMS support,” on page 125 describes the DLI/IMS™ interface,

which is provided through the DLI, FILE, and RETRIEVE statements.

Chapter 10, “User exits,” on page 173 tells you how to use and write user exits. A

user exit is a PEngiCCL macro that is invoked by the translator when a job ends,

to extract information collected by the translator.

Chapter 11, “Installation and Migration Utility options,” on page 185 describes the

last few steps of installing Migration Utility, and tells you about the options you

can set when you install or when you are running Migration Utility.

© Copyright IBM Corp. 2002, 2005 vii

Chapter 12, “Dynamic I/O mode and PDS/PDSE support,” on page 209 describes

Dynamic I/O mode and support for PDS and PDSE libraries.

Chapter 13, “Toolkit replacement macros,” on page 215 describes Toolkit and

date-handling replacement macros, and enhanced date threshold handling.

Chapter 14, “Messages,” on page 229 lists all the messages that Migration Utility

provides through all the steps of creating COBOL programs from Easytrieve

programs.

The appendix “Migration Utility JCL,” on page 339 lists the supplied JCL for

running Migration Utility and the FSYMIG00 control file.

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the

IBM® messages you encounter, as well as for some system abends and codes.

Using LookAt to find information is faster than a conventional search because in

most cases LookAt goes directly to the message explanation.

You can use LookAt from the following locations to find IBM message

explanations for z/OS® elements and features, z/VM®, and VSE:

v The Internet. You can access IBM message explanations directly from the LookAt

Web site at http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/.

v Your z/OS TSO/E host system. You can install code on your z/OS or z/OS.e®

systems to access IBM message explanations, using LookAt from a TSO/E

command line (for example, TSO/E prompt, ISPF, or z/OS UNIX® System

Services running OMVS).

v Your Microsoft® Windows® workstation. You can install code to access IBM

message explanations on the z/OS Collection (SK3T-4269), using LookAt from a

Microsoft Windows DOS command line.

v Your wireless handheld device. You can use the LookAt Mobile Edition with a

handheld device that has wireless access and an Internet browser (for example,

Internet Explorer for Pocket PCs, Blazer, or Eudora for Palm OS, or Opera for

Linux handheld devices). Link to the LookAt Mobile Edition from the LookAt

Web site.

You can obtain code to install LookAt on your host system or Microsoft Windows

workstation from a disk on your z/OS Collection (SK3T-4269), or from the LookAt

Web site (click Download, and select the platform, release, collection, and location

that suit your needs). More information is available in the LOOKAT.ME files

available during the download process.

Syntax notation

Throughout this book, syntax descriptions use the structure defined below.

v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.

The ��── symbol indicates the beginning of a statement.

The ───� symbol indicates that the statement syntax is continued on the next

line.

The �─── symbol indicates that a statement is continued from the previous line.

The ──�� indicates the end of a statement.

Structure of this manual

viii Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Diagrams of syntactical units other than complete statements start with the �───

symbol and end with the ───� symbol.

v Keywords appear in uppercase letters (for example, ASPACE) or upper and

lower case (for example, PATHFile). They must be spelled exactly as shown.

Lower case letters are optional (for example, you could enter the PATHFile

keyword as PATHF, PATHFI, PATHFIL or PATHFILE).

Variables appear in all lowercase letters in a special typeface (for example,

integer). They represent user-supplied names or values.

v If punctuation marks, parentheses, or such symbols are shown, they must be

entered as part of the syntax.

v Required items appear on the horizontal line (the main path).

�� INSTRUCTION required item ��

v Optional items appear below the main path. If the item is optional and is the

default, the item appears above the main path.

��

INSTRUCTION
 default item

optional item

��

v When you can choose from two or more items, they appear vertically in a stack.

If you must choose one of the items, one item of the stack appears on the main

path.

�� INSTRUCTION required choice1

required choice2
 ��

If choosing one of the items is optional, the whole stack appears below the main

path.

�� INSTRUCTION

optional choice1

optional choice2

 ��

v An arrow returning to the left above the main line indicates an item that can be

repeated. When the repeat arrow contains a separator character, such as a

comma, you must separate items with the separator character.

��

INSTRUCTION

�

 ,

repeatable item

��

A repeat arrow above a stack indicates that you can make more than one choice

from the stacked items, or repeat a single choice.

The following example shows how the syntax is used.

Syntax notation

About this manual ix

�A� The item is optional, and can be coded or not.

�B� The INSTRUCTION key word must be specified and coded as shown.

�C� The item referred to by “Fragment” is a required operand. Allowable

choices for this operand are given in the fragment of the syntax diagram

shown below “Fragment” at the bottom of the diagram. The operand can

also be repeated. That is, more than one choice can be specified, with each

choice separated by a comma. The note at the bottom of the syntax

diagram indicates a restriction on the choice.

Syntax diagram

 �A� �B� �C�

��

optional item

INSTRUCTION

�

 ,

Fragment

��

Fragment:

 operand choice1

(1)

operand choice2

operand choice3

Notes:

1 operand choice2 and operand choice3 must not be specified together

Syntax notation

x Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Summary of changes

Technical changes are marked in the text by a change bar in the left margin.

PTFs UK00656 and UQ93850

v New features

– Stand-alone file compare utility.

– Dynamic SQL.

– Drill Down Reports (HTML/Browser-ready reports).

– Character-separated values (CSV) reports.

– Character-separated values (CSV) files.
v New EASYTRAN/EZPARAMS options

CAFSSID= Default SSID for Call Attachment Facility (CAF) for resolving

DB2 column definitions.

CFACTOR= Intermediate results precision option for high order math

operations.

DYNINIT= Initializing option for records of files that run in dynamic mode.

MOVERPT= Move method for building REPORT LINE and TITLE lines.

NEWPAGE= Blank line option when no TITLE lines exist.

RESET= Field reset option for fields defined with RESET option.

SQLBIND= Establishes the default SQL/DB2 application program run mode.

SQLSSID= Establishes the default DB2 system (SSID) if one is not supplied

via the PARM SSID in Easytrieve Plus source.
v Miscellaneous fixes and syntax enhancements

– MU SORTWKn record length generating logic has been changed to use the

length of the output file, if the input file LRECL is smaller than the output file

record length. The RECFM of SORTWKn file is forced to be of variable length.

– Support for files with zero record length has been added.

– Support for DLI FOR ACCESS statement has been added.

– The CASE statement arguments are accepted in parentheses.

– The RETRIEVE macro has been changed to double up ampersands in the SSA

string to avoid translator errors.

– Support for DLI files without RECORD definition has been added.

– Support for DUMMY files in synchronized file logic has been added.

– The re-allocating of SYSLMOD by the FSYTPA00 program has been changed

from DISP=OLD to DISP=SHR.

– Support for symbolic program name has been added to the FSYMIG00

program.

– FSYMIG00 has been changed to alter DISP=(NEW,PASS) to

DISP=(MOD,PASS,) in the test JCL it creates to prevent JCL error.

– The maximum field name length in the MOVE like statement has been

changed from 8 characters to 64 characters.

© Copyright IBM Corp. 2002, 2005 xi

– Support for K type varying fields has been added, including varying graphic

fields for DB2.

– DEFER and UPDATE logic for DB2 files has been made functional.

– Control break field tag (identifier) printed due to SUMCTL (TAG) has been

repaired to be the original field name defined in the program.

– The TITLESKIP logic has been repaired to use the proper print control when

the skip value is not multiples of 3.

– A trailing special character is now allowed in index names.

– The DLI file definition syntax has been changed to allow a DBD name

without parentheses.

– Support for hex value for packed decimal and display numeric fields has

been added.

– MU has been changed to always generate unique report names.

– MU has been changed to differentiate between RECORD name and a

subordinate field name for DLI files.

– Bad literal or constants generated when used as host variables have been

fixed.

– Some COBOL warning messages have been eliminated.

– The DATAECONV macro has been changed to clear the target date before the

call to the date conversion program.

– The VSAM random read logic has been changed to preserve the original

buffer, even if the read fails, making MU compatible with Easytrieve Plus.

Summary of changes

xii Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Chapter 1. Introducing Migration Utility

Migration Utility is IBM’s licensed version of the Foundation Software Program

Engineering (FS/PEngi) family of COBOL development tools.

The components of the original set of tools are:

PEngiEZT Easytrieve Translator.

PEngiCCL Common Conditional (Macro) Language, sometimes referred to as

CCL1.

PEngiBAT Batch Programs Generator Subsystem for generating Batch COBOL

Programs.

Throughout this manual there are references to PEngiCCL and PEngiBAT.

However, when you use Migration Utility you are not able to use PEngiCCL or

PEngiBAT in stand-alone mode. They are used internally by Migration Utility as a

part of the overall process.

Migration Utility converts Easytrieve programs to IBM mainframe COBOL or

PEngiBAT. Its primary objective is to provide the ability to run Easytrieve

programs in COBOL mode, eliminating Easytrieve inefficiencies. The benefits are:

v COBOL I/O handling is more efficient

v COBOL sorting and searching is more efficient

v COBOL better coexists with other languages and environments

v All COBOL debugging tools can be used for debugging

v More people are available for program support

v COBOL is portable to other platforms

v You can save money by eliminating Easytrieve costs

Migration Utility gives you a choice:

v You can continue developing programs using the Easytrieve format. The only

thing that changes is JCL. That is, you use the Migration Utility translator and

COBOL compiler in the place of Easytrieve. You can maintain the program

source in Easytrieve format.

v You can convert the Easytrieve programs to PEngiBAT or COBOL. You can

convert existing and newly developed programs. After converting, you maintain

COBOL code or enjoy the power of PEngiBAT.

If you do not own Easytrieve you can use Migration Utility and enjoy the benefits

without ever purchasing Easytrieve.

What is supported

Migration Utility converts standard Easytrieve batch programs. It supports VSAM,

QSAM, SAM, SQL/DB2, DLI/IMS, tape files, and unit record devices. It also

supports the Easytrieve Macro Language and COPY directive. In most instances no

changes will be required to your existing Easytrieve programs.

Easytrieve Plus programs can be converted to either COBOL/390 or COBOL II.

COBOL/390 includes later versions of the COBOL/390 compiler such as Enterprise

COBOL.

© Copyright IBM Corp. 2002, 2005 1

Translating concepts

Migration Utility translator reads in programs modeled (written) in Easytrieve Plus

format and converts them to either COBOL II or COBOL/390 (COBOL). The

COBOL programs are then compiled and linked as regular COBOL programs.

The translator is written in PEngiCCL macro language.

The translating process involves converting the Easytrieve source to PEngiBAT

format. The generated PEngiBAT program is then converted to COBOL.

 ┌────────────┐ ┌────────────┐ ┌──────────┐

Easytrieve │ │ PEngiBAT │ │ COBOL │ │

Source │ PEngiEZT │ Source │ PEngiBAT │ Source │ COBOL │

 ───────�┤ Translator ├─────────�┤ Translator ├───────�┤ Compiler │

 │ │ │ │ │ │

 └────────────┘ └────────────┘ └──────────┘

 This process is transparent to the user. It is handled by the supplied procedures.

Structure of Easytrieve programs

An Easytrieve Program has three sections. These are described below.

Environment Section

This section lets you alter Easytrieve Compiler options through the PARM

statement. Except for DB2-related parameters, this section is ignored by

Migration Utility (refer to “PARM statement parameters” on page 110).

Library Section

This section contains the FILE, RECORD and Work Field definitions. This

section is fully supported by Migration Utility as described. All exceptions

are clearly noted.

Activity Section

This section contains program procedures and statements that compose

program processing logic and file I/O events. This section is fully

supported by Migration Utility as described. All exceptions are clearly

noted.

 The Activity Section contains JOB and SORT subsections. There can be

multiple JOB and SORT subsections within a single program. Each JOB or

SORT subsection may contain one or more REPORT definitions.

Translating concepts

2 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Order of statements in an Easytrieve program

 ───────────────────────────────────────

Environment Section PARM . . .

 ───────────────────────────────────────

Library Section FILE . . .

 DEFINE . .

 . . .

 ───────────────────────────────────────

 JOB . .

Activity Section (statements)

 (job procedures)

 REPORT . .

 (report procedures)

 SORT . .

 (sort procedures)

 . . .

 ───────────────────────────────────────

This sample program illustrates the order.

 FILE FILEIN1 DISK (80) |

 CUST-NAME 01 15 A HEADING (’NAME’) |

 CUST-ADDRESS1 16 15 A HEADING (’ADDRESS1’) | Library Section

 CUST-ADDRESS2 32 15 A HEADING (’ADDRESS2’) |

 CUST-ADDRESS3 48 15 A HEADING (’ADDRESS3’) |

 JOB INPUT FILEIN1

 PRINT REPORT1 |

 |

 REPORT REPORT1 LINESIZE 080 |

 TITLE 01 ’NAME-ADDRESS REPORT EXAMPLE’ | Activity Section

 LINE 01 CUST-NAME + |

 CUST-ADDRESS1 + |

 CUST-ADDRESS2 + |

 CUST-ADDRESS3 |

The program produces the following report (Xs represent real data):

 05/30/95 NAME-ADDRESS REPORT EXAMPLE PAGE 1

 NAME ADDRESS1 ADDRESS2 ADDRESS3

 XXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

 XXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

 XXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

 XXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

 XXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

 XXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

 XXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

 XXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

Of course, most real programs are a lot more complex.

Review of the Easytrieve punctuation rules

Easytrieve statements can be placed anywhere between columns 1 and 72. Each

statement is separated by one or more spaces, or a comma followed by at least one

space.

Structure of Easytrieve programs

Chapter 1. Introducing Migration Utility 3

Each Easytrieve statement is followed by its relevant arguments. The arguments

can be placed on the same line or on subsequent lines, but, each continued line

must be terminated by a ″+″ or ″-″ symbol.

When a line is continued with a ″-″ symbol, the continuation is assumed to start at

the beginning of the next line (Typically used for continuing literal).

When a line is continued with a ″+″ symbol, the continuation is assumed to start at

the beginning of the text on the next line (first non-space).

The statement can be terminated with a ″.″ or by omitting the continuation symbol.

Examples

Here are some Easytrieve statements:

 REPORT REPORT1 + | single

 LINESIZE 80 + | statement

 SUMMARY + | with + for continuation

 DTLCOPY

 SEQUENCE ACCOUNT DATE

 CONTROL ACCOUNT | statements

 LINE 01 ACCOUNT DATE LAST-NAME | with

 no continuation

Review of the Easytrieve punctuation rules

4 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Chapter 2. Using Migration Utility

Migration Utility can be used in two ways:

1. Compile and run your existing Easytrieve Plus programs.

In this case, you must do a one-time conversion to make sure that programs

run correctly. Refer to Chapter 3, “Conversion guidelines,” on page 13 for more

details on how to do conversions.

2. Compile and run your new programs written in Easytrieve Plus syntax.

In either case, the JCL and PROCs located in the SYS1.SFSYJCLS library, as

described in this chapter, will get you started.

Migration Utility executes a few job steps when translating Easytrieve Plus

programs to COBOL.

The current release of Migration Utility can be run in two ways:

1. Using the One-Step driver program FSYTPA00.

The One-Step driver program translates programs in a single job step, and is

quite compatible with Easytrieve Plus. The differences amount to changing

EZTPA00 to FSYTPA00 on the EXEC statement, and providing access to

Migration Utility instead of Easytrieve Plus load libraries.

This method is the preferred method, and must be used for the Parallel Testing

utilities.

2. Using JOBs and PROCs compatible with previous releases, as described in

“Using JCL with multiple steps” on page 8.

This mode of operation should be used to preserve compatibility with previous

releases.

Note: This method cannot be used with the Parallel Testing conversion utilities.

This mode of operation sharply differs from how the Easytrieve Plus EZTPA00

compiler works, thus substantial changes are required to your existing JCL.

Using the one-step translating driver

Program FSYTPA00 replaces the EZTPA00 Easytrieve Plus compiler exec.

FSYTPA00 reads the #EZTPROC proc from the installed libraries. This proc will

have been customized by your system programmer or installer. It contains all JCL

and steps necessary for FSYTPA00 to translate programs in a single step. This proc

is not read by the operating system, but rather, it is read by FSYTPA00 as a regular

text file and interpreted as needed.

Note: #EZTPROC is invisible to the users. Do not make your own copy and

modify it unless absolutely needed.

The default proc is #EZTPROC, and is located in SYS.SFSYJCLS. This proc contains

job steps and JCL that collectively describe the resources needed for the translation

process. Although this proc is invisible to you, you should be aware of multiple job

steps in the proc. The following job steps are in the proc:

FSCCL1 Translates Easytrieve Plus programs to PEngiBAT

© Copyright IBM Corp. 2002, 2005 5

FSCCL2 Translates PEngiBAT to COBOL

SQLTRAN Runs generated COBOL through the DB2/SQL translator

COBOL Compiles the generated COBOL program

LKED Links the compiled module

LKGO Runs Link and Go programs

 The sample JCLs supplied in SYS1.SFSYJCLS provide the basic statements needed

to translate and run Migration Utility.

There are some files that you may want to redirect to your own output, or provide

additional input. See “Overriding ddnames in your JCL” on page 7 for files that

you can override.

Using Migration Utility with your existing Easytrieve Plus jobs

To use the One-Step translator driver with your existing Easytrieve jobs, make the

following changes. This procedure applies to both Link and Go jobs and Compile

and Link jobs.

1. Add this statement to your JCL:

// JOBLIB DD DSN=SYS1.SFSYLOAD,DISP=SHR

2. Change the EZTPA00 program name on the EXEC statement (on the PARM=

for DLI) to FSYTPA00.

3. Remove any unnecessary Easytrieve Plus libraries, such as Toolkit macros and

load libraries. Optionally, you can comment out the EZTVFM file.

4. Submit your job.

Like Easytrieve Plus, the one-step driver program runs all steps as a single job

step. Temporary files, virtual files, and work files are dynamically allocated at run

time. There is no need to add these files to your JCL unless you need more space

than the default amount specified by the WRKSPACE= parameter. For more

information refer to the DYNALLOC= and WRKSPACE= parameters in “Migration

Utility translator options” on page 194.

If ″PARM LINK (&PROGRAM R)″ is coded in your program, the translator will

create a load module for future use, otherwise it will run (Link and Go). Note that

this is how Easytrieve Plus works.

Using Migration Utility for new programs

To translate and run new programs, use one of the sample JCLs or PROCs

provided in SYS1.SFSYJCLS (and listed in the appendix “Migration Utility JCL.”)

Each job has a documentation section to help you customize it for your needs.

Here is the list and a brief description of each supplied JCL:

JCMUCLGJ one-step translate, link and go JCL (no proc)

JCMUCLGP one-step translate, link and go (using proc)

JCMUCL1J one-step translate and link (no proc)

JCMUCL1P one-step translate and link (using proc)

JCMUCL2J two-step translate and link (no proc)

JCMUCL2P two-step translate and link (using proc)

Using the one-step translating driver

6 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

JCMUCNV1 automated conversion initiation job

JCMUIMSJ sample job for translating IMS/DLI programs

JCMUMIG1 automated conversion engine with self restart

JCMUMIG2 manual conversion engine with no restart

JCMUSQLJ two-step translate, link and bind for SQL

JCMUSQLP two-step translate, link and bind for SQL(using proc).

 Note that you can use these JOBS for existing programs as well.

Controlling Translator listings and messages

The translator prints a condensed listing of your Easytrieve Plus program, by

default, to SYSLIST1. Errors are printed to the FJSYSER1 file.

COBOL or SQL/DB2 translator listings are printed only when the return code is

greater than 4.

The Link Map is always printed.

A COBOL listing is automatically printed for abnormally terminated Link and Go

jobs.

You can provide overrides in your program via the EASYTRAN DEBUG statement.

The DEBUG must be coded on a single line. Continuation is not supported. For

more details of the available options, refer to “DEBUG= parameter” on page 198.

Example:

PARM LINK (PROGNAM1 R)

* EASYTRAN: DEBUG(LIST BLIST COBOL)

* END-EASYTRAN

- program statements -

Depending on the supplied DEBUG= options, the following possible listings are

produced:

SYSLIST1 FSCCL1 step listing of Easytrieve Plus program

FJSYSER1 FSCCL1 step error messages

SYSLIST2 FSCCL2 step listing of PEngiBAT statements

FJSYSER2 FSCCL2 error messages

SYSTLIST SQL/DB2 translator Listing (DB2 only)

SYSTERM SQL/DB2 translator messages

SYSTSPRT SQL/DB2 bind step listing (DB2 only)

COBLIST COBOL compiler listing

LKEDMAP Link map

Overriding ddnames in your JCL

You can provide the following overrides in your JCL:

Using Migration Utility for new programs

Chapter 2. Using Migration Utility 7

COBLIB Optionally, provide one or more additional libraries for COBOL

copy books. This library is normally not needed unless you are

using COBOL copy books for field definitions.

DBRMLIB Needed for DB2 programs. This file is required when translating

DB2 programs. This is an output file passed to the DB2 bind step

(see JCMUSQLJ and JCMUSQLP jobs).

LRECL=80,RECFM=FB,DSORG=PO.

FJBIND0 Translator-generated SQL BIND file. This file is required when

translating DB2 programs. LRECL=80,RECFM=FB, DSORG=PS.

The default is a temporary file.

FJERLOG Optional error log file. The FSYTPA00 program logs the failed

translating step to this file. LRECL=80,RECFM=FB, DSORG=PS.

This file is primarily used to track errors when using the

Automated Conversion engine (JCMUMIG1) proc. Coding

DISP=MOD for this file, results in a cumulative error log of all

translated programs.

FJPROC0 Optionally, allows override of the default PROC. Use it to point to

your own #EZTPROC, should you have to create one. For example:

//FJPROC0 DD DSN=USER1.CONV.JCL(#EZTPROC),DISP=SHR

FJSYSPH Optionally, the generated COBOL can be saved into this file.

LRECL=80, RECFM=FB. The default is a temporary file.

FJSYSIN Optionally, EZPARAMS library and the member name. For

example:

//FJSYSIN DD DSN=SYS1.SFSYEZTS(EZPARAMS),DISP=SHR

The default is in DSN=SYS1.SFSYEZTYS

PANDD Optional additional libraries where your Easytrieve Plus macros

are located. Check with your installation standards. This ddname

can be changed to a different name. If so, you must use the

ddname assigned at your installation.

SYSLIB Optional additional load libraries for your called submodules used

by the link step.

SYSLMOD Your program is linked into this library. This file is required in the

JCL for programs that contain PARM LINK (&PROGRAM R) in the

Easytrieve Plus source.

Using JCL with multiple steps

These guidelines are valid for translating existing or newly developed Easytrieve

programs to COBOL/390 and later versions of COBOL.

Migration Utility JCL library (distributed with the product) contains standard

procedures for running the translator. See “System information” on page 180 for

PDS names. You need to run only one of the following procedures, depending on

the level of completeness you want to obtain. The procedures are:

JCEZCOB1 Translates programs to PEngiBAT format and places them into a

PDS.

JCEZCOB2 Translates programs to COBOL, and places them into a PDS. It

does not compile.

Overriding ddnames in your JCL

8 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

JCEZCOB3 Translates programs to COBOL, compiles and links the load

module.

JCEZCOB4 Translates programs to COBOL, compiles, links and executes (link

and go).

JCEZC390 Translates programs to COBOL/390, compiles and links the load

module.

JCEZDB2A Translates programs to COBOL, translates SQL, compiles and links.

JCEZDB2B Translates programs to COBOL, translates SQL, compiles, links and

binds.

JCEZDB2R Sample Run JCL for generated COBOL with DB2®.

JCBIND00 Sample BIND JCL for DB2.

JCEZE390 Translator JCL with external PROC for translate, compile and link.

JCEZL390 Translator JCL with external PROC for translate, compile, link and

execute (link and go).

JCEZG390 Translator JCL with external PROC for translate, compile and run

(link and go with program LOADER).

EZTCOB External PROC used by JCEZE390 and JCEZL390 JCL.

EZTLKG External PROC used by JCEZG390 JCL.

To install, follow these steps:

1. If your installation did not create standard procedures for running Migration

Utility, copy the above procedures into a PDS and tailor them to run with your

user ID. (Consult with System Administrator for JCL library.)

DB2 users, refer to “Activating Call Attachment Facility (CAF) for DB2 users”

on page 188.

2. The Easytrieve program source code must be placed into a PDS/PDSE or

equivalent library that can be accessed as a PDS.

Change ISOURCE= symbolic in the procedure to point to the PDS where the

Easytrieve program is located. The program source is read from the SYSIN, in

FSCCL1 step, if SYSIN ddname is provided. If SYSIN is not coded, the program

source is read from the FJCPYLB ddname.

There must be only one program per PDS member. Migration Utility does not

translate multiple programs from a single PDS member.

Note: When translating existing programs, verify if any tailoring is needed. See

“Compatibility check” on page 25 for more information.

3. When your program is read as a PDS member, you can leave JCL at the front of

the program. You must remove any JCL at the end of the program (for

example, /* or //). For instream SYSIN, you must remove the JCL and add /*

and // to the bottom of the program source.

Change FJSYSJC= symbolic, in the Proc, to an output data set name where

program JCL will be created (JCEZCOB2 and JCEZCOB3 procedures only).

4. The Easytrieve Macros used by the program must be placed into a PDS or

equivalent library that can be accessed as a PDS. One or more libraries can be

concatenated in the JCL.

Change USERCPY= symbolic, in the Proc, to point to the PDS where Easytrieve

macros are located.

Using JCL with multiple steps

Chapter 2. Using Migration Utility 9

If there is more than one macro library, concatenate additional libraries to the

FJCPYLB ddname in the first (FSCCL1) step.

5. Member EZPARAMS in the Migration Utility library (SYS1.SFSYEZTS) contains

Migration Utility default options. Make a copy of the EZPARAMS member and

tailor it to your needs. It is essential to set the correct IOMODE= option in the

EZPARAMS member as this parameter affects the amount of tailoring required

to be made to Easytrieve Plus programs.

Macro EASYDTAB in the Migration Utility library (SYS1.SFSYCCLM) contains the

REPORT statement defaults. Make sure that EASYDTAB contains defaults

compatible with your existing Easytrieve defaults, including edit masks for

SYSDATE and SYSDATELONG. Refer to Chapter 11, “Installation and

Migration Utility options,” on page 185 for details.

Change EZPARMS= symbolic, in the Proc, to point to the PDS where EZPARAMS

member resides.

6. Change Proc EXEC (located at the bottom of the Migration Utility Proc), to

reflect the input program name, the output program name (if any), and the JCL

option, for example:

/STEP001 EXEC PROC=FSPENGI,IMEMBER=PROGXYZ,OMEMBER=PROGXYZ,JCL=YES

The JCL=YES option punches a procedure for running the translated program.

You can omit this option until the program translates clean. After a successful

run, JCL can be found on the FJSYSJC file. This generated procedure contains

JCL statements located in front of your program, and sample symbolic for any

internally generated files. You can retrieve the sample procedure from the flat

file into your PDS and massage it.

Migration Utility tries to identify the file usage based on the top to bottom

sequence of events in the program. The first OPEN determines the file type as

an output or an input file. The assumption might be wrong for files that are

opened more than one time in a single program.

The DEBUG= switch located in the JCL can be used to generate a display

statement of paragraph name in each generated COBOL paragraph.

DEBUG=Y Generates active displays.

DEBUG=I Generates inactive displays.

DEBUG=N Does not generate any display statements.
When DEBUG=I is specified, the statement SOURCE COMPUTER.....WITH

DEBUGGING OPTION is generated with a “*” in C C 7. Subsequently, you can

remove the * to activate the embedded displays. When you specify DEBUG=Y,

the statement is generated without a “*”.

7. Submit the JOB. The Migration Utility translator prints the program and the

diagnostics on the SYSLIST device.

Depending on the procedure you are using, there can be up to six job steps

involved:

The first (FSCCL1) step ,common to all three procedures, is always the step that

translates the Easytrieve program to the PEngiBAT format. Errors in the

Easytrieve program are detected in this step. Errors and the input program

source are printed on the SYSLIST device and FJSYSER file.

The second (FSCCL2) step, common to JCEZCOB2 and JCEZCOB3, is always

the step that translates the PEngiBAT program generated in the first step, to

COBOL. Errors in this step indicate a flaw in the PEngiBAT translator. Some

problems could probably be eliminated by rationalizing the origin of the

problem back to the Easytrieve program, however. Errors and the generated

PEngiBAT program source are printed on the SYSLIST device and FJSYSER file.

Using JCL with multiple steps

10 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

The third (COB2) step, and the fourth (LKED) step, in JCEZCOB3, compile and

link the generated COBOL program. Errors in COB2 step indicate a flaw in the

PEngiBAT translator. These errors could be eliminated by rationalizing the

origin of the problem back to the Easytrieve program. Some common errors

that can be encountered are:

v Field names that conflict with COBOL verbs

v Undefined fields

v Non-numeric fields used in arithmetic

v Improper IF statement

Programs that contain SQL statements must be translated with JCEZDB2A or

JCEZDB2B jobs. The SQL translator and BIND steps are standard DB2/SQL

facilities. All messages should be handled as per DB2/SQL conventions.

8. When COB2 and LKED step run clean, test the program as per JCL as

described in step number 6.

Any file I/O errors that are detected by the program are printed on the

FJSYABE and SYSOUT listings. The error report shows the file name that

caused the error, status information and some suggestions as to the cause of the

problem. Similar descriptions can be found in the COBOL Programmers

Reference Manual.

Using JCL with multiple steps

Chapter 2. Using Migration Utility 11

Using JCL with multiple steps

12 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Chapter 3. Conversion guidelines

Your existing Easytrieve Plus programs must be tested to make sure that no

functionality is compromised. There are two ways of testing:

1. You can convert programs manually. This can be accomplished by converting

each program and running it the Migration Utility way, the Easytrieve Plus

way and comparing the outcomes visually or using a file compare tool. You

would tweak your existing Easytrieve Plus JCL, or one of the supplied JCL, to

test programs the Migration Utility way.

This method is appropriate when Easytrieve Plus programs and macros are not

centrally placed or cannot be centrally placed into a library for mass

conversion, or when the overhead of learning and setting up the Automated

Parallel testing utilities is not justified by the relatively small number of

programs to do (30 or less).

2. You can convert and parallel test programs using the supplied Automated

Parallel testing utilities. This method is preferred method. It is appropriate for

large number of Easytrieve Plus programs that can be centrally accessed.

In either case, you can use the FSYCNV50 (JCYCNV50) program to locate

Easytrieve Plus programs and JOBS and copy them into a common library for easy

access.

Once you create a PDS of Easytrieve Plus programs and macros, you can run

FSYCNV55 (JCYCNV55) to produce some valuable statistics about your Easytrieve

Plus portfolio.

Here is an outline of things to do:

1. Read “Compatibility check” on page 25 to familiarize yourself with the

differences between Easytrieve Plus and Migration Utility.

2. Run the FSYCNV50 (JCYCNV50) program to locate all Easytrieve Plus

programs and instream (Link and Go jobs).

3. Run FSYCNV55 (JCYCNV55) to obtain program statistics.

4. Determine if you should use the manual process or the automated tools.

v For the manual process, follow the hints in “A brief review of the manual

Parallel Testing process” on page 17.

v For the automated process, follow the instructions in “The Automated

Parallel Testing utility” on page 18.

Using the FSYCNV50 (JCYCNV50) utility

This utility scans all PDS libraries in the supplied input PDS directory table. It

identifies Easytrieve Plus JOBs and programs and copies them into a central

location.

Use the supplied JCL JCYCNV50 to run this job. Embedded comments in the JCL

describe all needed files.

FSYCNV50 reads members found in each PDS supplied in the USRDSN1 table and

does the following steps:

1. Detects and copies all Easytrieve Plus programs to the NEWSRC output file.

© Copyright IBM Corp. 2002, 2005 13

2. Detects jobs that execute EZTPA00 and EZTPA00X programs and:

 For //SYSIN DD *

– copies inline Easytrieve Plus programs to NEWSRC

– changes the SYSIN in the job to point to the new member

– copies the updated job to the NEWJCL library
 For SYSIN DD DSN=&DSN(&MEMBER)

– copies the SYSIN Easytrieve Plus program to NEWSRC

– copies updated job to the NEWJCL library

It is possible to have name overlaps (duplicate names) during the FSYCNV50

process, because the job reads multiple libraries as per the supplied USRDSN1 file.

The duplicate names are renamed to NEWnnnnn for Easytrieve Plus programs, and

JCLnnnnn for JOBS, where nnnnn is the sequence number. That is, the first original

name is copied as is and any additional duplicates are given a new name.

Programs are considered to be Easytrieve Plus programs if one or more of the

following criteria are found in the first and second word of each line:

FILE &word where &word is 8 characters or less

SORT &word where &word is 8 characters or less

JOB INPUT &word where &word is 8 characters or less

 Jobs that invoke EZTPA00/EZTPA00X program via a symbolic SYSIN value and

procs with a symbolic SYSIN value cannot be processed. Such jobs must be located

manually or using other available tools, if any.

Data set names coded in the USRDSN1 table and not located on the system are

bypassed.

FSYCNV50 run-time options

FSYCNV50 run-time options allow you some flexibility. They are specified as

follows:

FSYCNV50 PARM=(&option1,&option2)

&option1 can be SYSIN or NOSYSIN:

SYSIN find programs pointed to by //SYSIN DSN=&DSN(&MEMBER)

NOSYSIN ignore programs pointed to by //SYSIN DSN=&DSN(&MEMBER)

 &option2 can be SOURCE or NOSOURCE:

SOURCE find programs not embedded in the JCL

NOSOURCE ignore programs not embedded in the JCL

 Examples:

//STEP010 EXEC PGM=FSYCNV50,PARM=(SYSIN,NOSOURCE)

//STEP010 EXEC PGM=FSYCNV50,PARM=(NOSYSIN,SOURCE)

//STEP010 EXEC PGM=FSYCNV50,PARM=(SYSIN,SOURCE)

Using the FSYCNV50 (JCYCNV50) utility

14 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Input files

USRDSN1 A PDS member that contains data set names to process. The data

sets must be PDS or PDSE libraries. Use the supplied #DSNAMES

located in the SYS1.SFSYEZTS library as a skeleton. Follow the

instructions in #DSNAMES.

MACTABL This is a conversion table for macro names that are longer than 8

characters. If long macro names can be found in the Easytrieve

Plus programs, they must be converted to names of 8 characters or

less. Code the old name in positions 1–16, including the % sign.

Code the new name in position 18–26. Use the supplied

#MACNAME located in SYS1.SFSYEZTS as a skeleton.

IFILE00 This is a dummy file used by the dynamic allocation program.

Attention: Do not change this file.

Output files

NEWJCL This file contains all jobs that were found with one or more ″EXEC

PGM=EZTPA00/EZTPA00X″ steps. Make sure you allocate enough

space and directory blocks to hold all selected jobs.

NEWSRC This file contains all located Easytrieve Plus programs. Long macro

names are replaced by the short macro names found in the

MACTABL file. Make sure that you allocate enough space and

directory blocks to hold all selected programs. A good way is to

allocate a large secondary space, should you need it.

TMPXRF3 This file contains the list of searched PDSs and the origin of the

processed members.

TMPXRF4 This file contains the list of JOBs copied into NEWJCL.

TMPXRF5 This file contains the list of Easytrieve Plus programs copied into

NEWSRC.

TMPXRF6 This job contains the list of duplicate names in the NEWSRC.

TMPJCL Temporary staging area for all selected members. Make sure to

allocate enough space and directory blocks to hold all jobs from all

selected data sets.

TMPJCL2 This is a work file. It contains one record per selected job.

TMPDSN2 This is a work file. It contains one record per selected program.

TMPXRF1, TMPXRF2

These are work files. They contain one record per selected

program.

SORTWK1-SORTWK4

These are work files. They contain one record per selected

program.

SORTWK01, SORTWK02

These are sort program work files.

Using the FSYCNV50 (JCYCNV50) utility

Chapter 3. Conversion guidelines 15

Using the FSYCNV55 (JCYCNV55) utility

This utility scans Easytrieve Plus programs centrally located in a PDS (or multiple

concatenated PDSs), and produces reports containing valuable statistics about

programs. Programs are classified as DB2, DLI/IMS or regular programs.

Input files

FILEIN This file must point to one or more PDSs where Easytrieve Plus

programs are located.

IMACRO1–MACRO8

Libraries where your application Easytrieve Plus macros are

located.

EXCLUDE This is a table of members to be excluded from the search (see the

#EXCLUDE member in SYS1.SFSYEZTS for the layout).

Output files

REPORT0 A list of programs sorted by number of reports in each program.

REPORT1 A list of programs by type and number of lines of code, including

a summary recap by type, number of sorts, number of jobs,

number of SQL statements, and so on. Make sure that you look at

the bottom of this report. All summary matrices are located at the

bottom of this report.

REPORT2 A list of located macros.

REPORT3 Programs found in input without a JOB statement (which implies

that they are probably not Easytrieve Plus programs).

Using FSYMIG20 (JCYMIG20) stand-alone compare utility

This utility lets you compare two files at the same time. The utility considers print

control characters and has the ability to call a user exit for massaging the input

buffers before comparison. A full description of its capabilities can be found in the

comments imbedded in the JCYMIG20 JCL located in the SYS1.SFSYJCLS PDS.

Input files

FJCOMP1 Input file #1 to be compared.

FJCOMP2 Input file #2 to be compared.

PARM PARM options on the exec (for details, see “Using FSYMIG20

(JCYMIG20) stand-alone compare utility”).

PARM=(&P1,&P2,&P3,&P4,&P5,&P6)

Where:

&P1=COMPARE Compare option. Leave this

parameter as is.

&P2 =NOLET Condition Code option:

NOLET Return error code.

LET Return RC=00 even

if compare errors

exist.

Using the FSYCNV55 (JCYCNV55) utility

16 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

|

|
|
|
|

|

||

||

||
|

|

|

||
|

||

||

||
|
|

&P3 =&program User exit program. Code 1-8

character exit program name. The

default is NOEXIT.

&P4 =&mode Compare mode for printer files:

BYTE Ccompares byte by

byte.

WORD Compares word by

word.

&P5 = Printer file CC handling:

EXPCC Replicate print

control characters.

NOEXPCC Compare line by

line (ignore print

control characters).

&P6 =64 Compare error limit. Compare

program terminates when this limit

is reached.

Exit program FSYXIT00 is supplied with the product. It can be located in the

SYS1.SFSYEZTS PDS.

For more detail on exit capabilities, see “Tailoring FSYXIT00 compare exit

program” on page 23.

Output files

FJERLOG Log of detected errors is printed in hexadecimal in segments of 100

bytes. The hexadecimal print shows 100 bytes from FJCOMP1, then

100 bytes from the FJCOMP2 file, below each other for easier

comparison, until all bytes are shown.

FJSTATS A cumulative statistics file for each run.

SYSOUT Additional compare statistics

A brief review of the manual Parallel Testing process

 1. Create conversion libraries where you will keep your converted Easytrieve

Plus program source, Easytrieve Plus macros, JCL and PROCS.

 2. Locate JCL and make sure that the JOBs run cleanly the Easytrieve Plus way.

This establishes your test environment for that specific JOBs.

 3. Run your Easytrieve Plus program(s) through the Migration Utility translator

and:

v Make the necessary changes to any flagged statements until you get clean

output.

v Create load modules (link programs) for programs that run in compiled

mode. Note that Link and Go programs do not have to be linked.

Note: Consider using one of the automated conversion engines JCMUMIG1

or JCMUMIG2 for this step, as described in “The Automated Parallel

Testing utility” on page 18.

Using the FSYCNV55 (JCYCNV55) utility

Chapter 3. Conversion guidelines 17

||
|
|

||

||
|

||
|

||

||
|

||
|
|

||
|
|

|
|

|
|

|

||
|
|
|

||

||

4. Change the Easytrieve Plus JOBs to save print and output files to disk for the

comparison utility.

 5. Run your tailored JOBs the Easytrieve Plus way.

 6. Tailor your working Easytrieve Plus JOBs to include all necessary JCL

statements to run with COBOL generated by Migration Utility. Note that the

printer and output files must be saved to a new set of files for comparison.

 7. Run your JOBs the Migration Utility (COBOL) way.

 8. If all goes well, compare the output files using a comparison utility.

 9. If the comparison fails, you must determine the cause, make program changes

if necessary, and rerun the Migration Utility JOB. Rerun the Easytrieve Plus

JOB only if you made changes to the program. Remember to delete the output

files from the previous run so that you can run the program again.

10. If all the files compare successfully, you must do one or more tests using

different input criteria or input files to make sure that the special conditions

(if any) work properly. This requires repeating steps 4, 6, 7, and 8.

11. When you are satisfied with the outcome, you can tailor your JCL for

production use and promote your tested programs to production.

The Automated Parallel Testing utility

The goal of this utility is to have your computer do the work with as little human

intervention as possible. Your JOB may contain multiple steps comprising both

Easytrieve Plus and non–Easytrieve Plus programs. Ideally, you would want to run

the Easytrieve Plus steps, the Migration Utility steps, the comparison steps and all

non–Easytrieve Plus steps in a single job. The Automated Parallel Testing Utility

comes very close to achieving this goal.

Provided utility programs

The following utility programs are provided:

FSYCNV50 (JCYCNV50) Easytrieve Plus programs Discovery utility.

FSYCNV55 (JCYCNV55) Easytrieve Plus programs Analysis utility.

FSYMIG00 (JCYMIG00) JCL Adjuster utility program.

FSYMIG05 Migration Utility step initiator for Link and Go programs (replaces

EZTPA00).

FSYMIG10 Migration Utility one-step driver program (runs Migration Utility

Link and Go and application programs). This program is initiated

by FSYMIG05 or the boot strap of linked program.

FSYMIG20 Compare Program driver (runs the compare program for each pair

of files). A step to run this program is generated in your JCL by the

FSYMIG00 program.

FSYCNV20 Compare Program. This program is invoked by FSYMIG20 for each

pair of files to compare.

FSYXIT00 Compare program user exit. This is an optional exit. See PARM=

for the FSYCNV20 step located in the #FJICNTL file.

 The following JOBS are provided in the &HQUAL.SFSYJCLS library:

JCYCNV50 Easytrieve Plus programs Discovery utility

JCYCNV55 Easytrieve Plus programs Analysis utility

Using the FSYCNV55 (JCYCNV55) utility

18 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

JCYMIG00 JCL Adjuster program (creates Production or Parallel Test JCL)

JCMUMIG1 Automated Conversion Engine

JCMUMIG2 Manual Conversion Proc

JCMUCNV1 Automated Conversion Initiator (initiates JCMUMIG1)

Preparing Jobs for the Automated Parallel Testing utility

Note: All jobs are located in the SYS1.SFSYJCLS library.

Create Parallel Testing/Conversion Environment

The first step is to create the Parallel Testing/Conversion environment.

1. Create the PROCS/JCL and PDS libraries needed for the conversion. You can

use the JCGENFIL job to do this. Make sure that you tailor data set names so

that they are unique to your own environment.

Modified Easytrieve Plus MACRO libraries can be shared with others. Sharing

program, JCL, load and statistics libraries can only complicate things. The

following files or libraries are needed:

 DSN=&HQUAL.MUCONV.BOOTSTRP.LOADLIB Linked programs boot straps for

parallel testing

DSN=&HQUAL.MUCONV.COBSRC Generated COBOL (see FJSYSPH)

DSN=&HQUAL.MUCONV.DBRMLIB DBRM library needed for DB2 only

DSN=&HQUAL.MUCONV.ERRORS Automated conversion error log

DSN=&HQUAL.MUCONV.EZTEST.LOADLIB Easytrieve Plus linked modules. May

use production instead.

DSN=&HQUAL.MUCONV.FJOJOB0 Output JOBS of JCYMIG00

DSN=&HQUAL.MUCONV.FJOPROC Adjusted PROCS - output of

JCYMIG00

DSN=&HQUAL.MUCONV.FJSYSP0 FJSYSP0 saved by conversion

JCMUMIG1/JCMUMIG2 PROCS

DSN=&HQUAL.MUCONV.LOADLIB Load library for converted linked

program

DSN=&HQUAL.MUCONV.EZPLUS.MACROS Easytrieve Plus application modified

macros

DSN=&HQUAL.MUCONV.EZPLUS.SOURCE Modified Easytrieve Plus programs

2. Tailor the #FJICNTL file. This file is read by the job FSYMIG00 (JCYMIG00). A

master copy of this file is located in &HQUAL.SFSYEZTS. Copy this file into

your own PDS and tailor it to your requirements. There are enough comments

embedded in the file to get you started. Note that some files created in step 1

may have to be specified in this control file.

3. Tailor the #CNVPROC file. This file is used by the jobs JCMUMIG1 and

JCMUMIG2. A master copy of this file is located in &HQUAL.SFSYJCLS. Copy

this file into your own PDS and tailor it to your requirements. There are

enough comments embedded in the file to get you started. Do not forget to

point the FJPROC0 ddname in your conversion proc JCMUMIG1 or

JCMUMIG2 to this file.

Non-SMS users: You must make dynamically-allocated files available to

subsequent steps. To do this, globally change:

v The “PASS” option in DISP=(?,PASS,?) to “CATLG”

v The “KEEP” option in DISP=(?,KEEP,) to “CATLG”

The Automated Parallel Testing utility

Chapter 3. Conversion guidelines 19

|
|

|

|

4. Tailor your conversion engine. You can use the JCMUMIG2 proc to run your

programs manually through Migration Utility one by one, or you can tailor the

JCMUMIG1 proc and JCMUCNV1 JCL to initiate the automatic conversion

engine.

The automatic conversion engine submits programs for conversion

automatically, one by one, by reading a directory table of programs to do. For

more details, read the comments embedded in the procs.

Run Easytrieve Plus programs through Migration Utility

The next step is to run the Easytrieve Plus programs through Migration Utility

using the JCMUCNV1/JCMUMIG1 or JCMUMIG2 utilities.

1. Programs that run in compiled mode will be linked:

v A load module is created to SYSLMOD library

v A bootstrap module for parallel test is created to the BOOTSTRP library

v File information file FJSYSP0 is saved for use by the JCYMIG00 JCL Adjuster

utility
2. Link and Go programs are translated but not linked. These programs are

translated ″in-flight″ during the JCYMIG00 and Parallel Test run as well.

Note: You must submit JCMUCNV1 to initiate JCMUMIG1. The JCMUMIG1

has a restart step to restart itself for the next program.

Prepare JCL/JOBs to run all steps for the comparison.

The next step is to prepare your existing JCL/JOBs to run the Migration Utility,

Easytrieve Plus, and Compare steps back-to-back.

Note: It is essential to tailor the #FJICNTL control file before doing this task, as

most information inserted or deleted from your JOB comes from #FJICNTL.

You use the supplied JCL JCYMIG00 to do this. JCYMIG00 runs the FSYMIG00

program, then:

v FSYMIG00 detects programs that run in compiled mode, creating the necessary

steps to run the Migration Utility steps, the Easytrieve Plus steps, and

comparison step for each Easytrieve Plus step found in the JCL.

v FSYMIG00 detects Link and Go Easytrieve Plus programs, and:

– Runs the Migration Utility translator for SYSINs found in the job to make

sure that the program translates cleanly, and obtains the necessary file

information for generating the Easytrieve Plus (EZT) step JCL.

– Creates a modified JOB to run FJOJOB0 with the necessary steps to run the

Migration Utility steps, the Easytrieve Plus steps, and the comparison step for

each Easytrieve Plus step found in the JCL, including any other

non-Easytrieve Plus steps. Note that all external PROCs are converted into

instream PROCs to reduce fragmentation.

Rules observed when preparing your job for parallel testing

The JCYMIG00 (FSYMIG00) program observes the following rules when making

changes to your JCL. ″MU Step″ refers to the Migration Utility step. ″EZT Step″

refers to the Easytrieve Plus step.

1. SYSOUT files (mostly PRINTER files)

MU Step: Files are redirected to a sequential disk file.

DISP=(NEW,CATLG,CATLG) is used.

The Automated Parallel Testing utility

20 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

EZT Step: Files are redirected to a sequential disk file.

DISP=(NEW,CATLG,CATLG) is used.

Compare: Files are compared using data set names as generated above.
2. Output DISP=NEW, Disk and Tape files (sequential files)

MU Step: Files are used as defined in the original JCL.

EZT Step: New files are generated to a disk file using the same attributes.

DISP=NEW is preserved in the EZT step for compatibility.

Compare: Files are compared using data set names as generated above.
3. Output DISP=MOD, Disk and Tape files (sequential files)

MU Step: Files are used as defined in the original JCL.

EZT Step: New files are generated to a disk file using the same attributes.

However, the original input files are copied to these new files

in the MU step to preserve input contents so that the EZT step

can add records (MOD on) to it. DISP=MOD is preserved in the

EZT step for compatibility.

Compare: Files are compared using data set names as generated above.
4. Output DISP=OLD, Disk and Tape files (sequential files)

MU Step: Files are used as defined in the original JCL.

EZT Step: New files are generated to a disk file using the same attributes,

however, these files are created in the MU step with the same

attributes as the original file defined in the JCL. DISP=OLD is

preserved in the EZT step for compatibility.

Compare: Files are compared using data set names as generated above.
5. New VSAM files (opened for output only, KSDS, RRN, and ESDS)

MU Step: Files are used as defined in the original JCL.

EZT Step: New files are generated to a disk file using the same attributes.

Note: VSAM files are allocated via SMS JCL statements.

Compare: Files are compared using data set names as generated above.
6. Update VSAM files (I-O mode KSDS and RRN)

REPRO Step: A utility IDCAMS REPRO step is generated before the MU step

that copies the original VSAM files to another set, with the

same attributes as the original files.

Note: VSAM files are allocated via SMS JCL statements.

MU Step: Files are used as defined in the original JCL.

EZT Step: Files are used as generated by the IDCAMS REPRO step.

Compare: Files are compared using data set names as generated above.
7. The original JOB step executing Easytrieve Plus Link and Go (or compiled

program) is converted to run COBOL generated by Migration Utility, followed

by the customized EZT step, followed by the compare step.

The output files created by Migration Utility are passed on to the compare

program and other JOB steps, while the files created by Easytrieve Plus are

passed on to the compare program only.

The Automated Parallel Testing utility

Chapter 3. Conversion guidelines 21

Parallel testing restrictions

1. Updates to DB2 tables and the IMS/DLI data base must be verified manually.

Migration Utility does not have the ability to clone DB2 tables and IMS/DLI

data bases for parallel testing and comparison. Programs that use DB2 tables or

IMS/DLI as input are not a problem, as input files need not be compared.

2. The input files must not change while the utility is running, as any change to

the input files might cause a mismatch. For example, if you point to a file that

is updated by CICS while running, that file may contain different information

when running the Migration Utility and EZT steps.

3. Files that are SORTED in place may not produce the correct results. For

example, if your program sorts FILEIN to FILEIN, but it uses FILEIN, before

sort, to produce output (report or output file), the order of records will not be

the same when the Easytrieve Plus step runs. Sorting files in place is not a

standard practice, so this restriction should have minimum impact on the

overall task. All such programs and jobs cannot be validated by this utility.

4. Be aware of time and date fields, and any time-dependent logic. If your

program makes decisions depending on a cut-off date or time, or outputs the

current date and time to output files, the comparison will fail. If you depend

on the cut-off date or time, make sure that you run the test within the same

window. If your output files contain date or time stamps, you can choose to

massage records before comparison through a user exit (see the FSYXIT00

sample program located in SYS1.SFSYEZYS).

5. Before attempting to run a parallel test, test your job to make sure that it runs

cleanly with Easytrieve Plus and is in a good working condition. This is a

required task, since encountering environmental problems, or attempting to run

a job without knowing that it runs with Easytrieve Plus, may further

complicate the process.

6. When parallel testing DB2 programs, make sure that the DB2 run mode is

compatible with the Easytrieve Plus run mode. That is, if Easytrieve Plus runs

DB2 programs in dynamic mode, Migration Utility must run in Dynamic mode

too. Also, make sure that the correct SSID and PLAN are used for both steps.

To make testing easier, enable Migration Utility to run with the same PLAN

names used to run Easytrieve Plus programs.

7. Link and Go programs that DISPLAY to SYSPRINT may produce compare

errors due to DISPLAY lines being written by Easytrieve Plus immediately after

the Easytrieve Plus program listing. To cope with the problem, FSYMIG10

(parallel testing driver program) inserts a JOB with a “DISPLAY NEWPAGE

’<REPORTS>’ ” before the first JOB procedure into every Link and Go

Easytrieve Plus program. When comparing, the compare program positions the

Easytrieve Plus reports beyond the <REPORTS> tag, thus properly positioning

SYSPRINT to the first report line. The change is made to the temporary copy

(created by Migration Utility) of your program source, thus the change has no

impact on the production version of your program.

8. Extraneous blank lines found in reports are bypassed with a warning message.

The return code is not affected.

9. Some programs may produce output file records padded with binary zeros by

Easytrieve Plus and spaces by COBOL due to partial data being moved directly

into the I/O area. To avoid compare errors, you can add a routine to the

compare exit program, to replace the trailing binary zeros with spaces.

Running the Parallel Test

1. Inspect your JOB generated by the FSYMIG00 (JCYMIG00) program. The job is

located in the FJOJOB0 PDS. Make sure everything looks correct.

The Automated Parallel Testing utility

22 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

2. Submit the job and let it run.

Note: Do not change the job name in your job after you run it through JCYMU00.

The reason is that the data set names for the output files contain the job

name that was in the JCL before it was run through JCYMIG00. Changing

the job name means the comparison would not work.

Do not worry about run-time statistics at this time. The MU step translates Link

and Go programs twice and makes copies of certain files for the EZT and compare

steps. Depending on the file types, this may add a substantial amount of

processing to the MU step.

The compare program runs after the MU and EZT steps are completed. The

records found in error are printed in hex under the original DD name, in segments

of 100 bytes. For example, REPORT1 errors would be printed to REPORT1

ddname, FILEOUT to FILEOUT ddname, and so on. The input files are

dynamically allocated by the FSYMIG20 program: FJCOMP1 for the MU file, and

FJCOMP2 for the EZT file.

The outcome is recorded to the FJSTATS and SYSOUT files.

The hex print is in increments of 100 bytes. The records in error are printed below

each other. For example, a 150-byte record would print:

100 bytes of record from file 1

100 bytes of record from file 2

50 bytes of record from file 1

50 bytes of record from file 2

...

In this way, records are shown above each other for easier comparison.

After the compare step completes, files created by the EZT step are deleted

(depending on the PARM= option of the compare step). Files are deleted only

when no differences are found.

The file defined by the FJPURGE ddname contains an IEFBR14 EXEC step with

DISP=(MOD,DELETE,DELETE) for each generated data set. You can submit this

job to purge all generated data sets should you have to rerun your test or should

they no longer be needed. The output data sets found in the original JCL are not

deleted.

Inspect your output. If you find errors, you must determine the cause, correct your

Easytrieve Plus program, and rerun the parallel test. Otherwise, you can assume

that results are compatible.

A good practice is to rerun the parallel test using different input and different

criteria (if the logic is parameter driven or time dependent) to make sure that all

conditions are tested.

When you are satisfied with the outcome, proceed with the steps in “Preparing

JCL for Production use” on page 24.

Tailoring FSYXIT00 compare exit program

The FSYXIT00 COBOL program allows you to massage input records before

comparison. FSYXIT00 is located in SYS1.SAFSEZTS. For tailoring information,

read the comments embedded in the program.

The Automated Parallel Testing utility

Chapter 3. Conversion guidelines 23

In short, two parameters, LS-REQUEST-LIST and LS-RECORD, are received as

defined in the Linkage Section. The program is entered initially for each pair of

files to be compared, to establish the comparison parameters (A00000-GETPARM-
LOGIC paragraph). Comparison options can be changed in this paragraph.

The program is then entered one time for each record in each file

(B00000-MASSAGE-LOGIC paragraph). Records can be changed in this paragraph.

For example, time stamps, dates, and other known problem fields can be spaced

out to avoid compare failure.

Preparing JCL for Production use

The FSYMIG00 (JCYMIG00) job tailors JCL based on the PARM=TEST or

PARM=PROD in the JCL.

To change your job for production use, create a separate #FJICNTL member (you

can call it a different name) and make changes to it for production environment.

Run JCYMIG00 with the PARAM=PROD option.

JCL for production use must have the Migration Utility run-time library

&HQUAL.SFSYLOAD allocated to JOBLIB or STEPLIB. The Easytrieve Plus

libraries must be removed from the JCL. The EZTPA00 program for Link and Go

steps must be changed to FSYTPA00. JCYMIG00 makes all these changes for you

based on the information in the #FJICNTL file.

FSYMIG00 (JCYMIG00) required files

FJIJOB0 This is your input PDS that contains Easytrieve Plus jobs. Multiple

PDSs can be concatenated.

FJIPROC This is your input PROCS library (containing PROCS that

Easytrieve Plus jobs call). Multiple PDSs can be concatenated.

FJICNTL This file must point to #FJICNTL parameters file.

FJIBOOT This is the output bootstrap load library. Bootstraps for converted

programs must reside in this PDS. Bootstraps are created by

JSMUMIG1 and JCMUMIG2 procs.

FJOJOB0 This PDS contains the tailored jobs.

FJOPROC This PDS contains the tailored PROCS for production use

(PARM=PROD).

FJTEMP0 This is a temporary file used for instream Easytrieve Plus

programs.

Dynamic Allocation option

There are four options in EZPARAMS that control the run-time dynamic allocation

feature.

Note: These options are required for parallel testing.

PRINTER=SYSPRINT

DYNALLOC=YES,

SYSOUT=’*,REFDD=SYSPRINT’,

WRKSPACE=’(CYL,(10,50),RLSE),UNIT=SYSDA’,

The Automated Parallel Testing utility

24 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

When using these options, there is no need to add TEMPWK*, SORTFL*,

SORTWK*, and virtual files to your JCL. In addition, PRINTER files are allocated

dynamically at run time for all missing PRINTER files, including the FJSYABE (the

abend file).

You can change SYSOUT and WRKSPACE to accommodate your needs. Be careful

with space. A good practice is to allocate a small primary space with some larger

secondary space. This way, if your file is too large for primary space, the secondary

space will cover for it.

Should you need more space for any given file, you can add it to your JCL. Files

are dynamically allocated only if they are not found in the JCL.

Compatibility check

There are a number of items that you need to check to ensure a smooth translation.

These are listed below.

File organization support

Migration Utility supports VSAM, QSAM, SAM, SQL/DB2, DLI/IMS, tape files,

and unit record devices. IDMS is not supported.

DB2/SQL column definitions can be automatically accessed from the

SYSIBM.SYSCOLUMNS catalog. Refer to “Activating Call Attachment Facility

(CAF) for DB2 users” on page 188. If CAF is not available, then an SQL DCLINCL

&NAME must be added to the programs that use SQL/DB2 tables. One statement is

required for each SQL/DB2 table in use. These statements must be placed before

the SQL file definitions (preferably before the first valid Easytrieve Definition).

SBCS and DBCS character support

Migration Utility supports single-byte character set (SBCS) and K (DBCS) field

types.

v DBCS Page number and the DBCS Date on REPORT statement are not

supported.

v Conversion of DBCS to SBCS and SBCS to DBCS is not supported.

v Easytrieve K fields are converted to COBOL as G type of fields.

v Migration Utility automatically adds the shift-in (x’0e’) and shift-out (x’0f’)

characters to K fields found on the DISPLAY and REPORT lines.

v When a constant (literal) is being assigned to a K field, Migration Utility

automatically adds the shift-in (x’0e’) and shift-out (x’0f’) characters to the literal

(constant).

Fixed-length records

When running in dynamic mode (IOMODE=DYNAM), record length is not a

concern. However, when running in static mode (IOMODE=NODYNAM), you may

need to make adjustments as described in this section.

Make sure that the record size of each file is fully defined. This can be done by

coding the record length in the file statement, or by defining the record layout in

full. This is because Easytrieve retrieves record size dynamically during the run

time. COBOL does not. It is essential to have the correct file record length in the

converted COBOL program.

The Automated Parallel Testing utility

Chapter 3. Conversion guidelines 25

NON-VSAM variable-length records

When running in dynamic mode (IOMODE=DYNAM), record length is not a

concern. However, when running in static mode (IOMODE=NODYNAM), you may

need to make adjustments as described in this section.

NON-VSAM variable-length record files can be:

v Variable

v Unblocked

v Variable blocked

v Spanned organization

Make sure that the record size of variable-length files includes 4 extra bytes for

standard length as per IBM standards. This is a standard Easytrieve rule too, thus,

you need to worry about only those files that do not have record size included in

the File definition.

Record length can be coded in the FILE statement.

Migration Utility computes the usable record area by subtracting 4 from the

declared length.

Easytrieve retrieves record size dynamically during the run time. COBOL does not.

It is essential to have the correct file record length in the converted COBOL

program.

VSAM variable-length records

When running in dynamic mode (IOMODE=DYNAM), record length is not a

concern. However, when running in static mode (IOMODE=NODYNAM), you may

need to make adjustments as described in this section.

A VSAM file is considered a variable-length file when the minimum record length,

specified in the VSAM catalog, is not equal to the maximum record length. If the

minimum and maximum lengths are equal, then the file is of fixed-length format.

For VSAM files, Easytrieve obtains record and file characteristics from the VSAM

Catalog, and it does not allow record size in the FILE definition.

COBOL does not dynamically allocate VSAM file characteristics. Therefore, an

option was added to Migration Utility to allow a record size on the FILE

statement. If the size is not specified on the file statement, Migration Utility

defaults to the size of the defined record.

If the minimum record size is equal to the maximum record size in the VSAM

catalog, the specified size must be equal to the maximum value specified in the

VSAM catalog.

If the minimum record size is not equal to the maximum record size in the VSAM

catalog, the specified size must be equal to the maximum value minus 4.

All output and UPDATE VSAM variable-length files must be specified with FILE .

. . V (NNN) where NNN is the LRECL (Maximum LRECL in the catalog - 4).

variable-length Read Only VSAM files do not need to be coded with a V. Refer to

“Defining VSAM files” on page 42 for full syntax.

NON-VSAM variable-length records

26 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

VSAM key usage

When running in dynamic mode (IOMODE=DYNAM), the VSAM key is

dynamically allocated at run time. However, when running in static mode

(IOMODE=NODYNAM), you may need to make adjustments as described in this

section.

COBOL requires that an alphanumeric VSAM file key for KSDS files is named in

the FD statement.

Easytrieve retrieves the key characteristics from the catalog.

To overcome the problem, the Migration Utility convention is to use one of:

1. The first defined field in the record as the file key. This is the default.

2. The key field named on the file statement. The key must be defined in the file

record.

Example: FILE FILEIN VS (KEY CUST-ACCOUNT)

In the first case, the key must be defined as an alphanumeric key for the full key

length. This method is also Easytrieve Plus compatible.

For relative (RRN) files, Migration Utility assigns an internal key in working

storage. The key of RRN files can also be named on the file statement as shown in

the second case. The named field must be previously defined as a 4-byte binary

field, however.

VIRTUAL files

Easytrieve VIRTUAL files are handled as regular sequential files in the translated

COBOL. No special handling is needed.

Extended printer support

Migration Utility does not support extended printing of Easytrieve. One way

around it is to change the Easytrieve program to the standard printing.

Index usage

Easytrieve allows index usage for fields defined without the OCCURS. COBOL

does not. Therefore, all such statements are flagged by Migration Utility.

Easytrieve allows the same index name to be used for more than one field. COBOL

does not. To resolve the problem, Migration Utility assigns a unique internal index

name to each indexed field.

These internal indexes are updated every time an index assigned by the Easytrieve

is changed. Therefore, there could be a substantial overhead maintaining an index

that is used for more than one field.

Resolve the problem by changing the program to use a unique index for each field.

Example:

FILE FILEIN

NAME 27 40 A

SCAN1 27 10 A INDEX (SUB1) OCCURS 4

SCAN2 27 3 A INDEX (SUB1) OCCURS 13

SCAN3 27 9 A INDEX (SUB1) OCCURS 5

VSAM key usage

Chapter 3. Conversion guidelines 27

In this example, three internal indexes are updated every time ″SUB1″ index is

changed in the program, even if it accesses only one field. To correct the problem,

assign a unique index to each of the fields:

FILE FILEIN

NAME 27 40 A

SCAN1 27 10 A INDEX (SUB1) OCCURS 4

SCAN2 27 3 A INDEX (SUB2) OCCURS 13

SCAN3 27 9 A INDEX (SUB3) OCCURS 5

Restriction:

Packed Unsigned (U) fields, 1-byte binary fields and 3-byte binary fields are

flagged as errors by the translator when used as index fields. This is because such

fields must be set up into a valid numeric field understood by COBOL before they

can be used, adding substantial CPU overhead. To resolve the problem, move such

fields into a 4-byte binary field and use the new field for indexing.

Note: SSMODE=GEN of EZPARAMS/EASYTRAN allows the use of PU, BL1, and

BL3 in subscripts.

Field naming conventions

Easytrieve allows up to 40 character field name length. Migration Utility reduces

all field names that are longer than 16 characters to 16 characters, automatically.

The field names are reduced by taking the first three characters of the words

separated by a dash (-), until the name goes below 17 characters in length. Note

that the INDEX names are not reduced. Long INDEX names should be manually

reduced to the acceptable size.

The process above might yield unintended or ambiguous field names. To avoid the

problem, a translate table can be provided in Migration Utility EZPARAMS options

to translate specific words to a desired acronym, or ambiguous field names to

acceptable names.

Use the NAMETAB parameter of EZPARAMS to change any special characters found

in Easytrieve field names to make field names COBOL compliant.

Use the COBVERBS=YES option of EZPARAMS to alter names of Easytrieve fields that

conflict with COBOL Reserved Words.

Migration Utility Options are described in Chapter 11, “Installation and Migration

Utility options,” on page 185.

Ambiguous field position; fields with Index and OCCURS

The biggest challenge writing Migration Utility was to translate the Easytrieve

defined record and working storage layouts to COBOL. The problem is that

Easytrieve allows fields to be defined out of sequence. As a result, many layouts in

Easytrieve programs are badly fragmented and out of order.

To overcome the problem, Migration Utility inserts fields or group of fields

sequentially by group reference and position within the group they belong to.

If you do get errors during Migration Utility translation, rearrange field definitions

such that they are in the correct sequence and do not destructively overlap.

v Programs with orderly record definitions generate fewer and simpler COBOL

layouts.

Index usage

28 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

v Fields are grouped together and any fields out of group range are flagged by

Migration Utility.

v All numeric fields that destructively overlap another field within a group item

are flagged.

v All alpha fields that destructively overlap another field within a group are

generated with a REDEFINE.

v Fields coded with INDEX &INDEX usage without OCCURS, are automatically

generated with OCCURS 1 TIME.

Example

WORKF1 W 10 A INDEX AINDEX

is converted to

 02 FILLER OCCURS 1 TIMES INDEXED BY AINDEX-001.

 03 WORKF1 PIC X(10) VALUE SPACES.

v Alpha fields of length 1 defined with OCCURS nn INDEX &INDEX that have

subordinate fields are generated with a group size of nn. The subordinate fields

of length greater than 1 redefine the group and are treated as fields without

occurs.

Example

WFIELD1 W 1 A OCCURS 50 INDEX INDEXY

WFIELD2 WFIELD1 1 A

WFIELD3 WFIELD1 +1 9 A

is converted to

 02 WFIELD1-G1.

 03 FILLER OCCURS 50 TIMES INDEXED BY INDEXY-001.

 04 WFIELD1.

 05 WFIELD2 PIC X(1) VALUE SPACES.

 02 FILLER REDEFINES WFIELD1-G1.

 03 FILLER PIC X(1).

 03 WFIELD3 PIC X(9).

 03 FILLER PIC X(40).

Binary field handling

2-byte and 4-byte binary fields are passed on to COBOL in Native mode.

The maximum value that can be accommodated by such fields in COBOL is

different from the maximum value accommodated by Easytrieve. (For limits, see

binary field description in “Defining Records and Working Storage” on page 50.)

COBOL Compiler option TRUNC(BIN) is recommended.

1-byte and 3-byte binary fields are not supported by COBOL. Migration Utility

expands special logic for handling such fields.

(For limits, see binary field description in “Defining Records and Working Storage”

on page 50.)

Assigning hex values

Migration Utility automatically resolves hex values usage whenever possible.

However, there are situations when an automatic solution cannot be implemented.

Illegal hex values are flagged by Migration Utility. Resolve the problem by

changing the hex value to a decimal equivalent, or converting the field to an

alphanumeric field.

Ambiguous field position; fields with Index and OCCURS

Chapter 3. Conversion guidelines 29

Common hex usage involves assigning low-values or high-values to the fields,

such as binary zeros or all X″FF″. For such cases, replace the hex value by either

the ″LOW-VALUE″ or ″HIGH-VALUE″ statement.

Field headings

The maximum string length of a heading in Migration Utility is 58 characters.

Easytrieve allows field headings longer than 58 characters. Reduce headings longer

than 58 characters to 58 characters or less.

Paragraph-naming conventions

Easytrieve allows paragraph and procedure names to be over 30 characters.

COBOL does not. Migration Utility alters paragraph names to conform to COBOL

rules.

Supporting VS COBOL and other incompatible COBOL

subroutines

The Easytrieve programs are translated to be compatible with COBOL II and

COBOL/390. Called subprograms that are written in other COBOL dialects such as

VS COBOL, and which contain VSAM file I/O routines, may experience a

problem. This is strictly a COBOL compatibility problem. Such subroutines must be

compiled with a COBOL II or COBOL/390 compiler to make them compatible.

Calling subprograms

Migration Utility converts calls to subprograms as follows:

1. It generates a static call for program names that are enclosed in quotation

marks.

2. It generates a dynamic call for program names that are not enclosed in

quotation marks.

Easytrieve does not accept quotation marks around the program name. By default,

all called programs would be interpreted as dynamic calls by Migration Utility. To

force a static call, enclose the program name in quotation marks.

Undetected errors

Easytrieve is a very forgiving language. It often ignores extraneous statements or it

does not impose strict rules. This is especially visible with REPORT related

statements like NOPRINT, NEWPAGE, and RENUM.

Migration Utility may flag such extraneous statements. If it does, remove them or

resort to a simpler form of expression.

Sign of numeric fields

Numeric fields defined with decimal places (even if zero) are generated with a

signed COBOL picture. Numeric fields defined with no decimal places are

generated with an unsigned COBOL picture.

For example,

FIELD-A W 5 N 2

is generated as:

02 FIELD-A PIC S9(03)V99 VALUE ZEROS.

Assigning hex values

30 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

and

FIELD-A W 5 N

is generated as:

02 FIELD-A PIC 9(05) VALUE ZEROS.

Some COBOL instructions force a positive sign in unsigned numeric fields, even if

the source field is negative. This can lead to differences at run time due to logic

taking on a different path when unsigned fields are tested for positive or negative

values. Make sure that arithmetic comparisons for negative values operate on

signed fields.

 Easytrieve forces an “F” sign in positive zoned decimal numeric fields. This is true

for signed (fields defined with decimal places, such as quantity), and for unsigned

fields (fields defined without decimal places).

COBOL forces a “C” sign in positive zoned decimal numeric fields that are defined

with a sign. Refer to the FSIGN= option in “Migration Utility translator options” on

page 194 for overriding options.

For example, if O-BALANCE field is defined as per below and it contains value

22222 then:

 Definition Hex Value

Easytrieve O-BALANCE 1 5 N 0 F2F2F2F2F2

COBOL O-BALANCE PIC S9(05) F2F2F2F2C2

The last byte is different, F2 instead of C2, This is numerically equal, but it is not

equal if compared as an alphanumeric value. Altering the Easytrieve definition to a

numeric unsigned field yields the same in COBOL:

 Definition Hex Value

Easytrieve O-BALANCE 1 5 N F2F2F2F2F2

COBOL O-BALANCE PIC 9(05) F2F2F2F2F2

Make sure that your Easytrieve fields are properly defined. All quantitative fields

should be defined with decimal places (even if zero) and all non-quantitative

values should be defined without decimal places.

In general, the intermediate calculations are not a problem. The problem is visible

on the output display numeric fields that are defined as quantity (with a sign) but

they are truly not a quantity, such as account numbers, serial numbers, and item

numbers.

Varying-length fields

In Easytrieve, fields defined as “varying” fields are composed of 2-byte binary

length followed by the text area. The length is maintained by Easytrieve as the

content of the field changes.

Migration Utility generates COBOL code that artificially maintains such fields, that

is, the field is defined as a group item with 2-byte binary length followed by the

text. The length value is automatically changed as the content of the field changes.

Note that this is exactly what the Easytrieve does.

The difference exist in the maximum value that can be represented by the length.

In COBOL, a 2-byte binary field can accommodate up to 9,999 in value (unless

TRUNC(BIN) is specified), while Easytrieve can accommodate up to 32,767.

Sign of numeric fields

Chapter 3. Conversion guidelines 31

The difference also exists in the compare instructions. While the generated COBOL

uses the length of the first argument and the second argument for comparison,

Easytrieve compares the values for the length of the first argument only. The

problem exists only if the fields being compared are not of the same length. The

remedy to this is to make sure that the fields being compared are of the same

length.

Also note that when MOVENUM=NATIVE is in effect and a value is moved into

the field length, the Easytrieve moves the value as is, while COBOL converts it to

the binary equivalent. For example, moving 32 into the field length results in

X’F3F2’ when performed by Easytrieve, and x’0020’ when performed by COBOL.

Uninitialized Working Storage fields

Be careful with Working Storage fields. Uninitialized fields may contain a different

initial value in the translated program as it is not possible to predict what is in

Working Storage at linking time. Using an uninitialized field without placing a

value in it may result in an incorrect outcome.

Migration Utility generates the initial values for Working Storage fields

automatically, providing that the field is not an object of redefine. If there may be

uncertainty, move a value into questionable fields in the START procedure of the

first JOB.

When a VALUE is specified, and the field redefines another field, Migration Utility

generates a MOVE of specified value, into the target field, at the beginning of the

program. Value of an indexed field, or fields with occurs is moved into the first

slot.

For initializing file records, refer to MEMINIT= parameter of EZPARAMS.

The MOVE statement

In Easytrieve, the MOVE statement moves data from left to right as if both areas

were alphanumeric. The data moved is not converted. Instead, it is moved as is,

even if the from or to fields are packed or binary fields.

When MOVENUM=EASYT is in effect, Migration Utility expands moves according

to Easytrieve Plus rules. This option gives you optimum compatibility. Refer to

“Migration Utility translator options” on page 194 for MOVENUM= option pros

and cons.

When MOVENUM=NATIVE is in effect, Migration Utility generates a standard

COBOL MOVE from Easytrieve MOVE. The data is moved according to the

standard COBOL conversion rules. So, a move from a binary field into a display

numeric field results in data conversion from binary to Display numeric format,

yielding a result that is different to the Easytrieve Move. You can achieve

compatible results by redefining the numeric field as an alpha field and using the

alpha field name as the source or target in the move statement.

Migration Utility issues a Warning (MNOTE) message for questionable moves. The

messages should be reviewed and problems should be corrected if deemed as

problematic.

Varying-length fields

32 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

FILE-STATUS (STATUS) codes

When the IOCODE=EASYT option is used, Migration Utility generates logic that

converts the COBOL status code to the Easytrieve Plus equivalent. No tailoring is

needed.

When IOCODE=NATIVE option is used, status code references must be tailored as

described below.

Easytrieve I/O status codes are different from those in COBOL. In general, changes

are not needed if your program is not checking for a specific non-zero value. If

your program is testing for a specific non-zero value, you must adjust the value in

your Easytrieve source to comply with the COBOL status codes. For more

information, refer to “System-defined fields” on page 84.

v FILE-STATUS code in the generated COBOL program is a 2-byte alphanumeric

field while in Easytrieve it is a fullword numeric field. Instructions in an

Easytrieve program that assign FILE-STATUS to a numeric field are flagged as

errors.

Example:

RETURN-CODE = FILEIN:FILE-STATUS

This is flagged as an error. The statement can be written as

WRETURN-CODE W 2 N

MOVE FILEIN:FILE-STATUS TO WRETURN-CODE

RETURN-CODE = WRETURN-CODE

v When testing for a value other than zero, Migration Utility expects the value to

be a 2-digit constant (literal) enclosed in quotation marks.

Labels inside a DO and IF pair of statements

Easytrieve allows labels (paragraph names) between a pair of DO and IF

statements. Programmers use labels to loop within the DO IF, or to jump around

the code. COBOL cannot handle such syntax.

Migration Utility automatically generates a separate COBOL paragraph if the label

is coded inside a DO IF pair before the first GO TO &LABEL statement that refers to

it. The generated paragraph is PERFORMED from within the original DO IF pair.

Migration Utility flags all labels that are coded after the first GO TO &LABEL, and the

label is inside a DO IF pair. Such conditions must be massaged by the

programmer.

Consider using the DOWHILE=PERFORM option. It will resolve the DO level

labels. However, the generated logic will be more fragmented.

Example

This example shows the initial Easytrieve code, and the code after conversion:

FIELDB = ’N’

IF FIELDA = ’Y’

 DO WHILE FIELDB EQ ’N’

 FIELDC = FIELDC + 1

 IF FIELDC GT 100

 FIELDB = ’Y’

 GOTO LABEL1

 ELSE

 FIELDB = ’N’

FILE-STATUS (STATUS) codes

Chapter 3. Conversion guidelines 33

END-IF

LABEL1

 END-DO

END-IF

Before translating, the routine should be converted to something like this:

FIELDB = ’N’

IF FIELDA = ’Y’

 DO WHILE FIELDB EQ ’N’

 PERFORM LABEL1-CODE

 END-DO

END-IF

 .

 .

* THIS PROC MUST BE INSERTED OUTSIDE OF THE CURRENT JOB MAIN BODY.

* END OF CURRENT JOB STATEMENT BUT BEFORE FIRST REPORT WOULD DO.

LABEL1-CODE. PROC.

 FIELDC = FIELDC + 1

 IF FIELDC GT 100

 FIELDB = ’Y’

 GOTO LABEL1

 ELSE

 FIELDB = ’N’

 END-IF

LABEL1.

END-PROC.

In general, Migration Utility flags improperly coded labels inside a DO IF pair. A

good practice is to run the translator to get errors first and then fix them.

You can code a GOTO &label statement from any IF, DO, or CASE nest level,

providing &label is at level 0 in the nest. When you are writing new programs,

avoid coding labels other than at level 0 inside IF, DO, or CASE statements.

External table record length

When running in static mode (IOMODE=NODYNAM), it is essential to have the

correct file record length in the converted COBOL program.

Refer to “Defining tables” on page 44 for syntax rules.

JCL for converted program

JCL needed to run Link and Go programs, or linked programs of current Migration

Utility Version 2 Release 1 or later, is compatible with Easytrieve Plus as described

in Chapter 2, “Using Migration Utility,” on page 5. If you elect to use the

multi-step JCL compatible with the previous releases, or if you need to generate

JCL for a new program, you can create skeleton JCL for the COBOL programs as

described below.

To generate JCL, existing JCL can be optionally included in front of the program

and JCL=YES can be specified on the Proc EXEC statement. For more information,

see “Using JCL with multiple steps” on page 8.

Migration Utility generates an Instream sample Proc by merging the existing JCL

to any new JCL needed by the generated COBOL program. The unneeded

statements are bypassed.

The following rules are observed:

Labels inside a DO and IF pair of statements

34 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

v An Instream Proc is generated. A JOB statement and additional libraries must be

added to the Proc.

v All JCL for input and output files are included from the included JCL, if present,

else a symbolic is generated with a dummy file name for each file. For

concatenated input files, symbolic is used only for the first file. Other files are

concatenated in the JCL.

v Statements for Temporary and Sort Work files are also generated, however, the

Proc must be changed to include proper allocation.

Temporary and Sort Work files are not transferred from the included JCL.

v System related files such as SYSPRINT, SYSDUMP, and SYSOUT are also

generated.

The Proc is created on the FJSYSJC file as defined in the translator JCL.

Overlapping fields on report lines

Easytrieve allows field overlaps on the report headers, print lines and field titles.

Migration Utility allows limited overlapping. A warning message is issued for each

encountered overlap.

When field titles overlap, Migration Utility strips the leading and trailing spaces

from all field titles to make things fit better. However if the overlapping still

cannot be resolved after all spaces are stripped, Migration Utility reduces the size

of the previous title and issues a warning message (generally in the PEngiBAT

step). The adjustment might not result in titles identical to those printed by

Easytrieve.

When fields or literals on print lines overlap, Migration Utility generates a layout

with REDEFINEs for proper placement of each field, starting with the intended

column.

If the fields on your report do not match exactly to those printed by Easytrieve

Plus, consider using the MOVERPT=EASYT option as described in “Migration

Utility translator options” on page 194.

If the MOVERPT=EASYT option does not resolve the problem, make manual

adjustment to the Easytrieve Plus program source to avoid overlaps. You can

reduce the field size or title, or shift its location to the right or, if possible, reduce

the mask size.

Caution: Any reduced field mask can cause a loss of leading data digits. Use

extreme care.

Group fields for SQL/DB2 usage

Easytrieve allows group fields to be used as host variables for SQL operations.

However, SQL/DB2 translator enforces strict rules on field types.

To overcome the problem, Migration Utility generates elementary field definitions

for all host variables, except for 01-level (the record level) host variables. Migration

Utility issues a warning message when a group field is changed to an elementary

item. The change has no impact on processing logic not related to SQL operations.

If the outcome of the automated change does not solve the problem, make manual

changes as shown in the following example.

JCL for converted program

Chapter 3. Conversion guidelines 35

|
|
|

|
|
|
|

Example

This example shows a group item and how it should be adjusted to make it an

elementary item.

WS-DATE W 8 A

WS-MM WS-DATE 2 N

WS-DD WS-DATE +2 2 N

WS-YYCC WS-DATE +4 4 N

can be coded as:

WS-DATE-X W 8 A

WS-MM WS-DATE-X 2 N

WS-DD WS-DATE-X +2 2 N

WS-YYCC WS-DATE-X +4 4 N

WS-DATE WS-DATE-X 8 A

In this example, WS-DATE-X is generated as a group item and redefined by WS-DATE,

thus making WS-date an elementary item.

OCCURS fields for SQL/DB2 usage

Easytrieve allows fields defined with OCCURS to be used as host variables for

SQL operations. SQL/DB2 enforces strict rules on field types. The subscripts

cannot be passed on to the SQL/DB2 preprocessor.

When possible, Migration Utility generates logic that offloads or loads the

subscripted host variables into elementary fields before and after the “EXEC SQL”

operation. Working storage is generated from the host variable field attributes.

When the subscripted host variables are located in the “WHERE...” statement, the

offloading or loading logic is invoked before and after the “EXEC SQL OPEN

&CURSOR” operation.

When the subscripted host variables are located in the “INTO...” or the “FROM...”

statement, the offloading or loading logic is invoked before and after the “EXEC

SQL FETCH/INSERT/...” operations.

If the SQL/DB2 translator issues errors due to falsely generated statements for

subscripted host variables, you must modify the statements by re-coding such

fields without OCCURS. You can code n number of fields, each ending with a

sequence number representing the field slot for clarity.

Example

This example shows an OCCURS item and how it can be adjusted to make it

SQL-friendly.

WS-ITEMS W 15 A

WS-ITEM WS-ITEMS 3 N OCCURS 5

can be coded as:

WS-ITEMS W 15 A

WS-ITEM-01 WS-ITEMS 3 N

WS-ITEM-02 WS-ITEMS +3 3 N

WS-ITEM-03 WS-ITEMS +6 3 N

WS-ITEM-02 WS-ITEMS +9 3 N

WS-ITEM-03 WS-ITEMS +12 3 N

Group fields for SQL/DB2 usage

36 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

The SQL FETCH/SELECT INTO host variables reference must be changed to

reference non-subscripted fields.

Packed unsigned fields

Migration Utility generates statements that artificially control access to or from

packed unsigned (PU) fields for all operations except when used as a subscript.

The maximum allowed length of a PU field is 8 bytes due to COBOL restrictions

on numeric fields.

Easytrieve allows PU fields to be used as subscripts. COBOL does not support PU

fields.

Migration Utility flags PU fields when used as subscript. To use a PU field as a

subscript, define a packed sign field or a binary integer in your Easytrieve source

for subscript use. Add a move where appropriate from the PU field into the newly

defined field.

The reason for not supporting subscript usage of PU fields is because it would add

to the complexity of the generated code and performance overhead.

Solution for OCCURS 1 problem

In Easytrieve Plus, OCCURS 1 is a valid statement. Programmers normally use the

OCCURS 1 technique to establish a reference for subscripting.

To preserve compatibility with previous releases, Migration Utility provides for the

following EASYTRAN/EZPARAMS options:

OCCURS1=0 Accepts OCCURS as is (compatible with Easytrieve Plus)

OCCURS1=1 Generates the field without occurs

OCCURS1=2 Generates OCCURS 2 in the place of OCCURS 1

The default in EASYTRAN is OCCURS1=0.

Note: Changing OCCURS 1 to OCCURS 2 doubles the field length. This solution

may not be valid for all programs, especially if the field defined with

OCCURS 1 changes the length of its group item.

OCCURS1=1 is recommended if the field with OCCURS 1 is not referenced in your

program.

Duplicate fields usage and reference

Duplicate fields usage

Migration Utility uses the duplicate field names in compliance with Easytrieve

Plus, using the following rules:

JOB INPUT &FILE

If a referenced field is a duplicate name, and it is defined in the JOB file,

Migration Utility uses the JOB file field; otherwise, it issues an EZT000-25

error.

JOB SORT& FILEIN TO &FILEOUT...

If a referenced field is a duplicate name, and it is defined in the SORT

&FILEIN, Migration Utility uses the &FILEIN file field.

OCCURS fields for SQL/DB2 usage

Chapter 3. Conversion guidelines 37

JOB INPUT (&FILE KEY (&KEY1...) &FILE2 KEY (&KEY1...))

If a referenced field is a duplicate name, and it is defined only in one JOB

file, Migration Utility uses the JOB file field, otherwise it issues an

EZT000-25 error.

JOB INPUT NULL

If a referenced field is a duplicate name, Migration Utility issues an

EZT000-25 error.

Unavailable Field reference

Migration Utility flags referenced file fields of unused files within the same job in

compliance with Easytrieve Plus.

File ddname considerations

Migration Utility generates sort work and temporary files for internal use

whenever a SORT or a report with SEQUENCE statement is encountered. These

generated file names may interfere with the file names defined in the Easytrieve

program. If you encounter a problem, make a global change to the file name in

your program. The standard internal names are: SORTWKn, SORTFLn and

TEMPWKn, where n is the sequence number assigned to each file.

When running in static mode, Migration Utility interprets all files that begin with

SORTWK and SORTFL as sort work files. The select statement for these files is

generated without a FILESTATUS flag. Files that begin with SORTWK or SORTFL

in your program should be changed to a different name to avoid complications.

Reports are normally printed to SYSPRINT by Easytrieve Plus when no PRINTER

is specified on the REPORT statements. Make sure that you specify the correct

PRINTER= option in the EZPARAMS/EASYTRAN. When a printer file is not

specified, Migration Utility writes to a file as specified by the PRINTER= option.

For example, when PRINTER= SYSPRINT is in effect, the report is written to

SYSPRINT. When PRINTER= AUTOGEN is in effect, an internal printer file is

generated. When PRINTER=REPORT0 is in effect, the report is written to

REPORT0 file.

Note: Migration Utility Version 1 always defaulted to PRINTER=AUTOGEN.

There was no override.

PRINTER=SYSPRINT is required when using the Automated Parallel testing

utilities.

VSAM files, mixed I/O mode

Easytrieve Plus allows mixed I/O mode (dynamic, sequential and SKIP sequential)

for VSAM files within a single JOB. However, you must use mixed I/O mode in an

orderly way such that the file is always appropriately positioned for the sequential

I/Os.

Migration Utility allows mixed I/O mode, but switching back and forth from

sequential to random or dynamic mode can lead to incompatible results.

For example, when a new record is added, Easytrieve Plus repositions the file from

sequential mode to the point where the new record is inserted. In the same

situation, COBOL remains positioned to read the next record for sequential mode,

even if a record is inserted elsewhere.

Packed unsigned fields

38 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

When a file with mixed I/O mode is detected, the translator warning message

“POSSIBLE I/O CONFLICT” is issued. If the VSAM file updated by Migration

Utility does not match the VSAM file updated by Easytrieve Plus, check for

translator warning messages to see if incorrect file positioning is the cause.

To properly position the file, use the POINT for sequential operations, or define a

second file for dynamic/random operations.

VSE operating system issues

Migration Utility can generate programs that can be compiled and run on a VSE

operating system. Programs must be generated to run in static I/O mode, as

dynamic I/O modules are not available for VSE.

To generate programs for a VSE system, in the EZPARAMS on the last statement,

change OPSYS=MVS; to OPSYS=VSE;. This causes Migration Utility to generate file

SELECT statements compatible with VSE.

Note that the SYS numbers coded on the FILE statements in Easytrieve programs

are bypassed by Migration Utility. The SYS numbers can be removed, should they

cause translator errors.

As there is no run-time library for a VSE system, you must generate programs to

run in static I/O mode. Also, you must generate programs that do not use any

dynamically loaded Migration Utility subroutines. See “Generating standalone

COBOL.”

Generating standalone COBOL

To generate standalone COBOL programs that do not use the Migration Utility’s

run-time load library, do the following:

1. Run MU translator with the following EZPARAMS options:

IOMODE=NODYNAM

DYNALLOC=NO

TBMEMORY=STATIC

SQLMODE=BIND

PRINTER=AUTOGEN

2. Make sure that file definitions fully define and specify the correct record length.

3. Make sure that VSAM file keys are properly defined.

4. Depending on your program, you may need to obtain source code from IBM

for one or more of the following programs:

FSABEC16 Abend handler

EZTPX01 PARM extractor

FSDATEZ0 Date routines interface

FSDATSRV Date service routines

FSLOPER0 Exclusive OR support

FSLOPER1 Exclusive AND support

FSVLNT00 Variable-length file support

FSVLNT03 Variable-length file support

FSVLNT90 Variable-length file support

Packed unsigned fields

Chapter 3. Conversion guidelines 39

|

|
|
|

|
|
|

|
|
|

|
|
|
|

|

|
|

|

|
|
|
|
|

|

|

|
|

||

||

||

||

||

||

||

||

||

FSYGPCB0 DLI PCB resolver

FSYGDBD0 DLI SSA resolver

The source for the above programs can be obtained by contacting the IBM

support center.

Incompatible field masks

Easytrieve Plus allows Z’s after the decimal point. COBOL does not.

Migration Utility adjusts all masks that contain Z’s after the decimal point to 9’s.

For example, MASK (’ZZZ,ZZZ.ZZ-’) is changed to MASK (’ZZZ,ZZZ.99-’).

To print spaces when a field value is zero, use the BWZ mask option. For example,

MASK (’ZZZ,ZZZ.99-’ BWZ).

Packed unsigned fields

40 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

||

||

|
|

|

|

|
|

|
|

Chapter 4. Defining entities

This chapter tells you how to define files, tables, records and working storage in

Migration Utility.

Defining files

The FILE statement describes the files that are referenced in the program.

Various ways of defining files are described on the pages that follow.

Supported file organizations

INDEXED VSAM KSDS File

RELATIVE VSAM Relative File

VSAM-SEQ VSAM Sequential File

DLI IMS/DLI

TABLE Instream or External Table

CARD Card Reader

PRINTER Printer

PUNCH Card Punch

SQL SQL/DB2

TAPE Tape File

DISK Sequential Disk File

SEQUENTIAL

Any Sequential File

VIRTUAL Easytrieve Virtual File (treated as sequential file)

PDS PDS and PDSE files

Supported sequential file record formats

F Fixed Unblocked

V Variable Unblocked

U Undefined

FB Fixed Blocked

VBS Variable Blocked Spanned

VB Variable Blocked

Non-supported file organizations

IS ISAM Files are flagged

IDMS IDMS Files are flagged

Non-supported file attributes (these attributes are bypassed)

ASA Option is ignored

WORKAREA This option is supported for the EXIT option only. Otherwise it is

ignored.

EXTENDED Option is not supported

DBSCODE Option is not supported

RETAIN Option is ignored; you can control it via JCL.

Supported file attributes

BUFNO Number of buffers used when IOMODE=DYNAM is specified

© Copyright IBM Corp. 2002, 2005 41

Defining VSAM files

�� FILE &DDNAME

VS
 INDEXED

RELATIVE

RRDS

VSAM-SEQ

 �

� PASSWORD ’&PASSWORD’

CREATE

RESET

UPDATE

NOVERIFY

F

V

(&LRECL

)

KEY

&KEY

 �

�

�

EXIT

(&pgmname

MODIFY

)

NR

USING(

&Pn

)

 �

�
WORKAREA

&size
 ��

Parameters

VS Indicates a VSAM File.

INDEXED Defines KSDS VSAM File.

RELATIVE Defines Relative VSAM File.

RRDS The same as RELATIVE.

VSAM-SEQ Defines ESDS VSAM File.

CREATE Defines an output file.

PASSWORD ’&PASSWORD’

&PASSWORD is a 1- to 8-character VSAM file password.

RESET Resets file to starting point (ignored by Migration Utility).

UPDATE Defines file for update mode. Valid for INDEXED and RELATIVE

files only.

NOVERIFY Ignore File Verify (ignored by Migration Utility).

Record format Possible values are:

F Fixed

V Variable

This is a Migration Utility convention only. Easytrieve does not

support it.

&LRECL Record length. The default is the size of the defined record.

Easytrieve does not support record length for VSAM Files. The

length is obtained from the VSAM Catalog.

Defining VSAM files

42 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

KEY &KEY is valid for VSAM KSDS (Indexed) files only. &KEY

identifies the field name coded in the record layout to be used as

the VSAM key. This option is not supported by Easytrieve. Use this

syntax when defining file layout using the %CBLCNVRT macro

from COBOL copybooks.

EXIT Identifies the exit to be taken before and after file I/O. Exit allows

you to prescreen or modify input and output records. Refer to “File

I/O Exits” on page 173 for details of I/O exits. EXIT is supported

for VSAM and sequential files only. Easytrieve Plus does not

support EXIT for DLI/IMS, IDMS, or DB2.

&pgmname The exit program to be invoked.

MODIFY This is a required parameter for VSAM files. When

MODIFY is specified, I/O operations are

performed by the generated COBOL. The exit

program is called after the input operations such as

GET and READ, and before the output operations

such as PUT or WRITE.

NR This is a VSE-related parameter. It is ignored by

Migration Utility.

USING Identifies additional fields (parameters) to be

passed to the exit program. &P1 ... &Pn are the

field names to be used.

Important notes:

1. Your exit program receives at least two parameters. The first

parameter points to file record, the second parameter points to

a WORKAREA, followed by additional parameters as specified

by the USING option (if any). WORKAREA is required for the

MODIFY option.

2. The file record is the input file record. You must move this file

record to the WORKAREA in your exit program. You can

modify the WORKAREA as needed. Upon return from your

exit, the WORKAREA is moved to the file record and made

available to your generated COBOL program.

3. Files with EXIT are always generated with

IOMODE=DYNAMIC.

WORKAREA Identifies the amount of storage to allocate for a work buffer. This

parameter is optional. It is used only for files with the EXIT option,

otherwise it is ignored.

 &size is the number of bytes to allocate. The maximum is 32768.

When running in IOMODE=DYNAM, record length and key locations are resolved

at run time dynamically. The following customization applies only when running

in static mode (IOMODE=NODYNAM).

If KEY &KEY is not coded, the File KEY for INDEXED files must be the first

defined field in the record. The field must be an alphanumeric field or a group

item. Numeric fields are flagged as errors. The File KEY for RELATIVE files is

automatically generated by Migration Utility based on the key usage in the I/O

statements.

Defining VSAM files

Chapter 4. Defining entities 43

Record format and record length are not allowed by Easytrieve for VSAM files. It

is a Migration Utility option only. To retain compatibility with Easytrieve, make

sure that the length of the record you define is equal to the real file record length.

The &LRECL option is provided as a safety feature if you want to prevent the

program from ever being run using native Easytrieve.

Migration Utility depends on the value of the record format to recognize VSAM

variable record format for OUTPUT and UPDATE Files. This is not an Easytrieve

convention. You must code a “V” for VSAM variable-length records.

Examples

This example defines FILEIN1 VSAM INDEXED File with key length of 16 bytes

and fixed record size of 500 bytes.

 FILE FILEIN1 INDEXED UPDATE (500)

 IN1-KEY 1 16 A | <= key is the first defined field

 IN1-RECORD 1 500 A | <= ensures full size

 . |

 . | <= other layout can be coded

This example defines FILEIN1 VSAM INDEXED File with key length of 16 bytes

and variable record size of 500 bytes.

 FILE FILEIN1 INDEXED UPDATE V(500)

 IN1-KEY 1 16 A | <= key is the first defined field

 IN1-RECORD 1 500 A | <= ensures full size

 . |

 . | <= other layout can be coded

Defining tables

Migration Utility supports instream and external tables. The instream tables have

data embedded in the program following the table definition. For external tables,

data is read from an external file. In either case, the data must consist of two

fields, Argument and Description. Argument is the Table Key. Description is

associated with the Key.

Defining VSAM files

44 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

�� FILE &DDNAME TABLE INSTREAM

External table parameters
 &ARG &POS �

� &LENGTH &TYPE &DESC &POS &LENGTH &TYPE �

�
Instream table values

 ��

Instream table values:

�

&ARGn

&DESCn

ENDTABLE

External table coding:

 (&ROWS)

F

V

U

FB

VBS

VB

(

&LRECL

&BLKSIZE

)

Parameters

&DDNAME 1 to 8 character file name

&ARG Field name for table key

&DESC Description for field name

&ARGn Table data for Argument field

&DESCN Table data for Description field

&POS Start Position in the record

&LENGTH Field Length

&TYPE Field Type, A, N, P

ENDTABLE Required end of data marker

&ROWS Maximum number of Table Rows

Record format Can be:

F Fixed Unblocked

V Variable Unblocked

U Undefined

FB Fixed Blocked

VBS Variable Blocked Spanned

VB Variable Blocked

This is a Migration Utility optional parameter.

&LRECL Record length

Defining tables

Chapter 4. Defining entities 45

When running in IOMODE=DYNAM, record length is resolved at

run time dynamically. The following customization applies only

when running in static mode (IOMODE=NODYNAM).

 Record length is required for &RECFM V, U, VB. The length must

include 4 extra bytes over the actual record size for all

variable-length files (V or VB).

 Record length is required when the actual record length of your

file is not equal to the size of the defined layout. The default is the

size of the defined record.

 This is a Migration Utility optional parameter.

&ARG Field name for table key

&DESC Description field name

&POS Start Position in the record

&LENGTH Field Length

&TYPE Field Type: A or N. Other formats are not supported by Easytrieve.

Note: &RECFM and &LRECL are Migration Utility parameters only. This

convention provides the ability to define a table file that has different record

length from the size defined by the layout.

Examples

This example defines WEEKDAY Instream Table for translating a day of the week:

 FILE WEEKDAY TABLE INSTREAM

 ARG1 1 1 A

 DESC1 3 9 A

 1 SUNDAY

 2 MONDAY

 3 TUESDAY

 4 WEDNESDAY

 5 THURSDAY

 6 FRIDAY

 7 SATURDAY

 ENDTABLE

This example defines an external Branch Table of 150 rows with a 2-digit Branch

Number and a 15-digit Branch Name:

 FILE BRTABLE TABLE (150)

 BRANCH 1 2 A

 DESCRIPTION 4 15 A

This example defines the same table as in Example 1 that resides on a variable

length file of LRECL=60:

 FILE BRTABLE TABLE (150) V(64)

 BRANCH 1 2 A

 DESCRIPTION 4 15 A

Defining tables

46 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Defining unit record devices and sequential files

��

FILE

&DDNAME
 SEQUENTIAL F

TAPE

V

U

FB

VBS

VB

CARD

PRINTER

PUNCH

DISK

VIRTUAL

�

�
(

&LRECL

)

&BLKSIZE

 �

�

�

EXIT

(&pgmname

MODIFY

)

NR

USING(

&Pn

)

 �

�
WORKAREA

&size
 ��

Parameters

&DDNAME One to eight character file name

Device:

CARD Card reader

PRINTER Printer

PUNCH Punch device

TAPE Tape file

DISK Sequential disk file

SEQUENTIAL

Any sequential file

VIRTUAL Easytrieve virtual file

 VIRTUAL files are handled as sequential disk files.

Record format:

F Fixed Unblocked

V Variable Unblocked

U Undefined

FB Fixed Blocked

VBS Variable Blocked Spanned

VB Variable Blocked

&LRECL Record length

Defining unit record devices and sequential files

Chapter 4. Defining entities 47

When running in IOMODE=DYNAM, record length is resolved at

run time dynamically. The following customization applies only

when running in static mode (IOMODE=NODYNAM).

 Record length is required for records of format V, U, and VB. The

length must include four extra bytes over the actual record size for

all variable-length files (V or VB). The record length is required

when the record layout is not coded. The default record length is

the size of the defined record.

&BLKSIZE Block size. Ignored by Migration Utility. The block size can be

controlled via DCB in JCL.

EXIT Identifies the exit to be taken for file I/O. EXIT for sequential files

allows you to:

1. Do file I/O in the exit program. This method is generated when

the MODIFY option is not specified.

2. Do file I/O by the generated COBOL, and prescreen or modify

input and output records. This method is generated when the

MODIFY option is specified.

Refer to “File I/O Exits” on page 173 for details of I/O exits. EXIT

is supported for VSAM and sequential files only. Easytrieve Plus

does not support EXIT for DLI/IMS, IDMS, or DB2.

&pgmname The exit program to be invoked.

MODIFY This parameter is optional for sequential files. It is

a required parameter for VSAM files.

 When MODIFY is specified, I/O operations are

performed by the generated COBOL. The exit

program is called after input operations such as

GET and READ, and before output operations such

as PUT or WRITE.

 When MODIFY is not specified, your exit program

is responsible for I/O operations, including file

open and close.

NR This is a VSE-related parameter. It is ignored by

Migration Utility.

USING Identifies additional fields (parameters) to be

passed to the exit program. &P1 ... &Pn are the

field names to be used.

Important notes:

1. When MODIFY is specified, your exit program receives at least

two parameters. The first parameter points to the file record.

The second parameter points to a WORKAREA, followed by

additional parameters as specified by the USING option (if

any).

WORKAREA is required for the MODIFY option. The file

record is the input file record. You must move this file record to

the WORKAREA in your exit program. You can modify the

WORKAREA as needed. Upon return from your exit, the

WORKAREA is moved to the file record and is made available

to your generated COBOL program.

Defining unit record devices and sequential files

48 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

2. When MODIFY is not specified, your exit program receives at

least two parameters. The first parameter points to file record.

The second parameter points to a BL4 I/O request code,

followed by additional parameters as specified by the USING

option (if any). Refer to “File I/O Exits” on page 173 for more

details.

3. Files with the EXIT and MODIFY options are always generated

with IOMODE=DYNAMIC.

WORKAREA Identifies the amount of storage to allocate for a work buffer. This

parameter is optional. It is used only for files with the EXIT option,

otherwise it is ignored.

 &size is the number of bytes to allocate. The maximum is 32768.

Note: Each file definition can be optionally followed by the record layout. For

additional information refer to “Defining Records and Working Storage” on

page 50.

Examples

Here are some variations of possible file definitions:

 FILE INPUT1 CARD (80)

 FILE INPUT2 VB (260 0)

 FILE OUTFIL FB (512 0)

 FILE MASTER TAPE F (2500)

 FILE TRANFL DISK F (3000)

 FILE OUTFIL VIRTUAL

Defining unit record devices and sequential files

Chapter 4. Defining entities 49

Defining Records and Working Storage

��

DEFINE

&FILE:
 &FIELD &POS

*

(+ &OFFSET1)

 W

S
 �

� &OVERLAY

&FILE

:

+ &OFFSET2
 �

� &LENGTH A &NDEC

COMP-1

EVEN

COMP-2

N

B

P

K

U

 �

�
Heading information

INDEX

(

&INDEX

)
 �

�
MASK

(

’&MASK’

)

&MASKID

BWZ

HEX

 �

�
OCCURS

&OCCUR

VALUE

&VALUE

ALL

RESET

VARYING
 ��

Heading information:

 HEADING (’&HEAD1’

’&HEAD2’

’&HEAD3’

) �

�
(

FONT#

’&HEAD1’

)

’&HEAD2’

’&HEAD3’

Parameters

DEFINE

This keyword denotes the beginning of a field. It is typically omitted.

&FILE File name. It is supported by Migration Utility but not recommended.

&FIELD

1 to 30 character field name

&POS Starting field position in the record

* + &OFFSET1

Relative offset to the last defined field (* for current location)

W Establishes a working storage field that can be changed

Defining Records and Working Storage

50 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

S Establishes a static working storage field (equivalent to a literal)

&OVERLAY

The group field name that this field belongs to

&OFFSET2

Displacement relative to the &OVERLAY. The displacement plus the field

size must fit within the boundary of the &OVERLAY field.

&LENGTH

Field length

Field type:

A Alphanumeric

COMP-1 Single-precision floating point number

COMP-2 Double-precision floating point number

N Numeric

B Binary (see comments below)

P Packed decimal

K Double character set

U Packed unsigned

Note: Floating-point types, COMP-1 and COMP-2 fields cannot be printed

or displayed. To print or display a COMP-1 or COMP-2 field, you

must first move the contents into a valid numeric field. However,

you can display the value using native COBOL.

&NDEC

Number of decimal places (numeric fields only)

EVEN Valid for U fields only. Forces the number of characters represented by the

field to be even.

&HEAD1, &HEAD2, &HEAD3

Field headings for report headers. The maximum length is 30 characters.

FONT#

Font Number (not supported by Migration Utility)

&INDEX

A unique index name used for accessing fields with OCCURS

&MASKID

Letters A through Z identify a previously defined mask.

BWZ Print option. Blank is printed when contents of the field is zero.

&MASK

Print mask

HEX Print option for printing in HEX

&OCCUR

Number of field occurrences

&VALUE

Initial field value. For alphanumeric fields, the value must be enclosed in

quotation marks. ALL is a Migration Utility option only. It is not supported

by Easytrieve.

RESET

Field is to be initialized at the beginning of each JOB.

Defining Records and Working Storage

Chapter 4. Defining entities 51

The behavior of this option depends on the RESET=EASYT/NATIVE

EASYTRAN/EZPARAMS parameter:

RESET=NATIVE

Resets fields the first time through the job logic.

RESET=EASYT

Resets fields every time the JOB cycle is entered.

VARYING

Field is a variable-length field (alphanumeric fields only).

The maximum value that can be contained in the binary fields when running with

Easytrieve differs from the value that can be accommodated by COBOL as follows:

Note: Compiling COBOL with TRUNC(BIN) option will increase the maximum

value of 2-byte and 4-byte fields to their maximum capacity. For the exact

values, refer to the IBM COBOL Compiler manual for your operating

system.

 Memory Easytrieve COBOL

 Size Max-Value Max-Value

 4 bytes 2,147,483,647+ 999,999,999+

 2,147,483,647- 999,999,999-

 3 bytes 8,388,607+ 9,999,999+

 8,388,607- n/a

 2 bytes 32,767+ 9,999+

 32,767- 9,999-

 1 byte 127+ 99+

 127- n/a

COBOL does not support 1-byte and 3-byte binary fields. For such fields,

Migration Utility expands special code that prepares fields in working storage

before they are accessed.

Example

These examples show some variations of possible field definitions.

 FILE FILEIN1 DISK (107)

 IN-ACCOUNT 01 10 N MASK ’99-99999999’ + |

 HEADING (’ACCOUNT’ ’NUMBER’) | sample

 IN-NAME 11 15 A HEADING (’SHORT’ ’NAME’) |

 IN-CUR-BAL 27 07 P 2 HEADING (’CURRENT’ ’BALANCE’) |

 IN-INT-DATA 35 11 A | file

 IN-INT-DATE IN-INT-DATA 6 N HEADING (’INTEREST’ ’DATA’) |

 IN-INTEREST IN-INT-DATA +6 5 N 2 HEADING (’INTEREST’ ’AMOUNT’) |

 IN-AMOUNTS 47 05 N 2 OCCURS 12 INDEX AMOUNT-INDEX | record

 HEADING (’MONTHLY’ ’AMOUNTS’) |

 WS-DATE W 6 N MASK (’99/99/99’) |

 WS-DATE-MM WS-DATE 2 N | sample

 WS-DATE-DD WS-DATE +2 2 N | working

 WS-DATE-YY WS-DATE +6 2 N | storage

 |

 WS-REPORT-TITLE S 40 A VALUE ’REPORT1 TITLE’ | <= literal

 WS-REPORT-TITLE2 W 40 A <= static

Defining Records and Working Storage

52 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

|
|

|
|

|
|

Chapter 5. Program instruction reference

This portion of the manual lists program instructions, with the syntax, further

explanation, and sometimes examples, for each instruction.

COPY statement

The COPY statement duplicates the field definitions of a named file.

�� COPY &FILE ��

Parameter

&FILE The name of the previously defined file whose fields you want to

duplicate.

Easytrieve allows an unlimited number of COPY statements for any one file.

Migration Utility allows a maximum of 27 copy statements per program. Migration

Utility alters the field naming conventions of the newly created file, by prefixing

each field by a letter assigned to the file being defined.

The COPY statement results in duplicate field names. A file qualifier is required

when accessing fields in files defined with a COPY statement.

Examples

The examples show some variations of possible field definitions.

 FILE FILEIN1 DISK (107)

 IN-ACCOUNT 01 10 N MASK ’99-99999999’ + |

 HEADING (’ACCOUNT’ ’NUMBER’) | sample

 IN-NAME 11 15 A HEADING (’SHORT’ ’NAME’) |

 IN-CUR-BAL 27 07 P 2 HEADING (’CURRENT’ ’BALANCE’) |

 IN-INT-DATA 35 11 A | file

 IN-INT-DATE IN-INT-DATA 6 N HEADING (’INTEREST’ ’DATA’) |

 IN-INTEREST IN-INT-DATA +6 5 N 2 HEADING (’INTEREST’ ’AMOUNT’) |

 IN-AMOUNTS 47 05 N 2 OCCURS 12 INDEX AMOUNT-INDEX | record

 HEADING (’MONTHLY’ ’AMOUNTS’) |

 FILE FILEIN2 DISK (107) FILEIN2

 COPY FILEIN1 COPY

 FILEIN1

© Copyright IBM Corp. 2002, 2005 53

|
|

SORT Activity Section

You can code one or more Sort Activity Sections following the FILE and Working

Storage definitions.

��

SORT

&FILEIN

TO

&FILEOUT

USING

�

(

&KEYn

)

SIZE

&SIZE

�

�
WORK

&WORK

BEFORE

&PROC

NAME

&NAME
 ��

Parameters

&FILEIN 1 to 8 character input file name

&FILEOUT 1 to 8 character output file name

&KEYn Fields to be sorted on (up to eight fields).

&SIZE Sort core size (ignored by Migration Utility)

&WORK Work area name (ignored by Migration Utility)

&PROC Input exit (taken after the Read of input record)

&NAME Sort name (ignored by Migration Utility)

Example

This example shows sorting input file FILEIN to output file FILEOUT. Clip

non-numeric accounts with all nines.

 JOB INPUT FILEIN1

 |

 GET FILEIN2 STATUS |

 IF EOF FILEIN2 | Some

 STOP |

 END-IF | References

 |

 IF FILEIN1:IN-ACCOUNT NE FILEIN2:IN-ACCOUNT | with file

 DISPLAY FILEIN1:IN-ACCOUNT ’ ACCOUNTS DO NOT MATCH’ |

 | names

 END-IF

 FILE FILEIN (80) |

 ICUS-ACCT 01 15 N |

 ICUS-NAME 16 15 A |

 ICUS-ADDRESS1 32 15 A | Input file

 |

 FILE FILEOUT (80) |

 OCUS-ACCT 01 15 N |

 OCUS-NAME 16 15 A |

 OCUS-ADDRESS1 32 15 A | Output file

SORT Activity Section

54 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

JOB Activity Section

The JOB statement defines and initiates processing activities.

�� JOB

�

INPUT

&FILE

(

&FILE

KEY

(

&KEYn

)

)

NULL

 �

� START &START

FINISH

&FINISH

NAME

&NAME

 ��

Parameters

INPUT Identifies the automatic input to the activity. If omitted, the input

file is assumed to be the output file from the SORT activity, if any,

which immediately preceded the current JOB. Otherwise, the

default input file is the first file named in the Library Section.

&FILE Identifies the automatic input file for sequential processing

&KEYn Identifies one or more file keys for synchronized file processing

(file match). This format requires that at least two input files are

defined to the JOB activity. File keys must be of compatible format,

for example, numeric or alphanumeric. For further information see

“Synchronized file processing” on page 56.

NULL Inhibits the automatic input process. This option is used when

input to the program is handled in the activity via READ or GET

statements. When “NULL” is coded, a “STOP” must be provided

in the activity processing section or the JOB will loop.

&START The start procedure name. Identifies a procedure to be invoked

during the initiation of the JOB. It is invoked before any automatic

input file records are read, therefore, automatic input file data

fields cannot be accessed. The START is often handy for initializing

fields or positioning files before input.

&FINISH The finish procedure name. Identifies a procedure to be invoked

before normal termination of the JOB. It is typically used to display

information accumulated during the processing.

&NAME Assigns a name to the current JOB. This statement is ignored by

Migration Utility.

 SORT FILEIN TO FILEOUT +

 USING (ICUS-ACCT ICUS-NAME) + | Sort statements

 BEFORE SELECT-FILEIN |

 |

 SELECT-FILEIN. PROC.

 IF ICUS-ACCT NOT NUMERIC |

 ICUST-ACCT = 999999999999999 | Before Sort Exit

 END-IF | move all 9’s into bad accounts

 SELECT | SELECT is needed to accept the

 END-PROC. | record.

JOB Activity Section

Chapter 5. Program instruction reference 55

Example

 FILE FILEIN1 DISK (80) |

 ICUS-ACCT 01 15 N |

 ICUS-NAME 16 15 A |

 ICUS-ADDRESS1 32 15 A | Input file 1

 ICUS-ADDRESS2 48 15 A |

 ICUS-ADDRESS3 62 15 A |

 |

 FILE FILEIN2 DISK (80) |

 JCUS-ACCT 01 15 N |

 JCUS-NAME 16 15 A |

 JCUS-ADDRESS1 32 15 A | Input file 2

 JCUS-ADDRESS2 48 15 A |

 JCUS-ADDRESS3 62 15 A |

 JOB INPUT NULL

 . | JOB with no automatic input

 .

 JOB INPUT FILEIN1

 . | JOB WITH FILEIN1 as input

 .

 JOB INPUT +

 (FILEIN1 KEY(ICUS-ACCT) + | JOB with synchronized files

 FILEIN2 KEY(JCUS-ACCT)) | process (file match)

 . |

 .

 JOB INPUT FILEIN1 +

 START A001-FILEIN1-START + | JOB with START and FINISH Procs

 FINISH Z999-JOB1-FINISH |

 . |

 .

 A001-FILEIN1-START. PROC.

 . | JOB Start Proc

 . |

 END-PROC.

 Z999-JOB1-FINISH. PROC.

 . | JOB finish Proc

 . |

 END-PROC.

Synchronized file processing

Synchronized file processing lets you:

v Match or merge multiple input files

v Serially process a single keyed file

In either case, special conditional expressions help determine relationships among

files, and file records on individual files. The special conditions are MATCHED,

DUPLICATE, FIRST-DUP, LAST-DUP, and file existence tests as described later in

this section (see “Special IF statements in synchronized process” on page 59).

The synchronized file process is initiated via the JOB activity FILE statements.

Each file named in the JOB activity must be followed by one or more keys (field

names) to be used in the comparison.

JOB Activity Section

56 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Corresponding keys of all files must be of the same type. Numeric keys must

correspond to numeric keys and alphanumeric keys must correspond to

alphanumeric keys.

Numeric keys can have different lengths.

Alphanumeric keys are expected to have the same length.

The files cannot be updated during the synchronized file processing because the

algorithm reads records ahead.

Indexed and relative files can be positioned, before synchronization starts, using a

POINT statement in the START procedure.

Example

This example shows JOB statements with Synchronized File Process:

 FILE FILE1 DISK (80) |

 I1-ACCT 01 15 N |

 I1-NAME 16 15 A |

 I1-ADDRESS 32 15 A | Input FILE1

 |

 FILE FILE2 DISK (80) |

 I2-ACCT 01 15 N |

 I2-NAME 16 15 A |

 I2-ADDRESS 15 A | Input FILE2

 |

 FILE FILE3 DISK (80) |

 I3-ACCT 01 15 N |

 I3-NAME 16 15 A |

 I3-ADDRESS 15 A | Input FILE3

 JOB INPUT (FILE1 KEY(I1-ACCT) + | Match all three files

 FILE2 KEY(I2-ACCT) + |

 FILE3 KEY(I3-ACCT)) |

 . |

 JOB INPUT (FILE1 KEY(I1-ACCT) + |

 FILE3 KEY(I2-ACCT)) | Match FILE1 to FILE2

 . |

 JOB INPUT (FILE1 KEY(I1-ACCT) + |

 FILE3 KEY(I3-ACCT)) | Match FILE1 to FILE3

Record availability

During synchronization, file records are made available for input based on the

relationships of the files’ key. Records with the lowest key are made available first,

and so on, following the hierarchy order of the files specified on the JOB

statement.

Duplicate key values affect record availability differently based on which file

contains the duplicates. The matching algorithm is hierarchical. The lower level file

key is exhausted before another record is processed from the next higher level file.

The figure below depicts the concept:

Synchronized file processing

Chapter 5. Program instruction reference 57

As per above, there are two CCCC keys on FILE1 and FILE2 and one CCCC key

on FILE3.

In JOB Cycle #3, the first CCCC record of FILE1, FILE2 and FILE3 are available.

In JOB Cycle #4, the first CCCC record of FILE1, the second CCCC record of FILE2

are available only. A record from FILE3 is not available at all.

In JOB Cycle #5, the second CCCC record of FILE1 is available only. A FILE2 and

FILE3 records are not available at all.

 Input Files Data

 FILE1 RECORD FILE2 RECORD FILE3 RECORD

 KEY # KEY # KEY #

 AAAA 1 BBBB 1 AAAA 1

 BBBB 2 CCCC 2 CCCC 2

 CCCC 3 CCCC 3 DDDD 3

 CCCC 4 DDDD 4 EEEE 4

 HHHH 5 DDDD 5 GGGG 5

 HHHH 6 FFFF 6 HHHH 6

 IIII 7 GGGG 7 HHHH 7

 ------------- Record Availability during the JOB ------------

 JOB FILE1 RECORD FILE2 RECORD FILE3 RECORD

 CYCLE KEY # KEY # KEY #

 1 AAAA 1 N/A AAAA 1

 2 BBBB 2 BBBB 1 N/A

 3 CCCC 3 CCCC 2 CCCC 2

 4 CCCC 3 CCCC 3 N/A

 5 CCCC 4 N/A N/A

 6 N/A DDDD 4 DDDD 3

 7 N/A DDDD 5 N/A

 8 N/A N/A EEEE 4

 9 N/A FFFF 6 N/A

 10 N/A GGGG 7 GGGG 5

 11 HHHH 5 N/A HHHH 6

 12 HHHH 5 N/A HHHH 7

 13 HHHH 6 N/A N/A

 14 IIII 7 N/A N/A

Record availability

58 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Special IF statements in synchronized process

The following special IF statements allow you to process records based on the

match criteria.

MATCHED

Use the MATCHED test to determine the relationship between the current record

of one file with the current record of one or more other files.

�� IF

NOT
 MATCHED

�

&FILEn

 ��

Parameter

&FILEn The names of the file names being matched

 If “MATCHED” is not followed by at least one file name, then all

files are included in the test.

File existence

To determine presence of data from a specific file, use this special test.

�� IF

NOT
 &FILE ��

Parameter

&FILE The name of the file whose existence is being tested

If the IF &FILE test is true, then file record is available and can be processed.

Otherwise, the &FILE record is not available for processing.

DUPLICATE, FIRST-DUP, LAST-DUP

DUPLICATE, FIRST-DUP and LAST-DUP determine the relationship of the current

record of a file to the preceding and following records in the same file.

�� IF

NOT
 DUPLICATE

FIRST-DUP

LAST-DUP

 &FILE ��

Parameter

&FILE The name of the file being tested.

Special IF statements in synchronized process

Chapter 5. Program instruction reference 59

IF DUPLICATE &FILE is true when a duplicate key exists (JOB Cycle 3, 4 and 5 for

FILE1 on the previous page).

IF FIRST-DUP &FILE is true when the first record containing duplicate key is

processed (JOB Cycle 3 for FILE1 on the previous page).

IF LAST-DUP &FILE is true when the first record containing duplicate key is

processed (JOB Cycle 5 for FILE1 on the previous page).

Example

 FILE FILE1 DISK (80) |

 ICUS-ACCT 01 15 N |

 ICUS-NAME 16 15 A |

 ICUS-ADDRESS1 32 15 A | Input file 1

 ICUS-ADDRESS2 48 15 A |

 ICUS-ADDRESS3 62 15 A |

 |

 FILE FILE2 DISK (80) |

 JCUS-ACCT 01 15 N |

 JCUS-NAME 16 15 A |

 JCUS-ADDRESS1 32 15 A | Input file 2

 JCUS-ADDRESS2 48 15 A |

 JCUS-ADDRESS3 62 15 A |

 JOB INPUT +

 (FILE1 KEY(ICUS-ACCT) + | JOB with Synchronized Files

 FILE2 KEY(JCUS-ACCT)) | Process (file match)

 |

 IF MATCHED

 PRINT REPORT1 | Report all MATCHED Records

 END-IF |

 |

 IF DUPLICATE FILE1 |

 PRINT REPORT2 | Report Duplicates on FILE1

 END-IF |

 |

 IF DUPLICATE FILE2 |

 PRINT REPORT3 | Report Duplicates on FILE2

 END-IF. |

 |

 REPORT REPORT1 |

 TITLE 01 ’REPORT OF MATCHED RECORDS’ |

 LINE 01 ICUS-ACCT JCUS-ACCT |

 |

 REPORT REPORT2 |

 TITLE 01 ’DUPLICATE RECORDS ON FILE1’ |

 LINE 01 ICUS-ACCT ICUS-NAME |

 |

 REPORT REPORT3 |

 TITLE 01 ’DUPLICATE RECORDS ON FILE2’ |

 LINE 01 JCUS-ACCT JCUS-NAME |

 |

Assignment statement

The Assignment statement assigns a value to a field. The value can be another

field, a literal or an arithmetic expression.

There are two types of assignment statements:

Special IF statements in synchronized process

60 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

1. Normal assignment (assigns field values and arithmetic outcomes to a field).

This type of assignment is supported by Migration Utility as described in this

section.

2. Bit field assignments (used with XOR, AND, OR Logical operators). This type

of assignment is supported by Migration Utility via a CALL to special

subprogram. Because of its infrequent use, this type of assignment is not

described in this manual. However, functionally the generated COBOL logic

yields the same results as Easytrieve.

��

&RECFIELD

INTEGER

 TRUNCATED

ROUNDED

=

EQ

&SENDFIELD

&SENDLITERAL

&FORMULA

��

Parameters

&RECFIELD The field name to which the value is assigned

INTEGER Coding INTEGER drops the decimal digits from the assigned value

ROUNDED | TRUNCATED

Specify ROUNDED or TRUNCATED when the receiving field is

too small to handle the fractional result of the assignment.

= | EQ Use = or EQ to indicate assignment.

&SENDFIELD Sending field (field to be copied)

&SENDLITERAL

Sending value can be a literal. Alphanumeric literals must be

enclosed in quotation marks.

&FORMULA Arithmetic expression. It can contain arithmetic operators (+, -, *,

/). The outcome of the calculation is placed in the &RECFIELD.

Migration Utility supports exponentiation (**). Thus, you can exponentiate values

before moving them into a field. Exponentiation is native to COBOL.

The data type being assigned to a field must be compatible with the field’s data

type. That is, numeric fields require a numeric source and alphanumeric fields

require an alphanumeric source. Alphanumeric literals must be enclosed in

quotation marks. Numeric literals can be preceded by “+” or “-”.

Example

 FILE FILEIN1

 I-BALANCE 1 5 N 2

 I-STATE 6 2 A

 WS-AMOUNT W 5 N 2

 WS-STATE W 15 A

 JOB INPUT FILEIN1 |

 WS-AMOUNT = 0 | some

 IF I-STATE = ’NJ’ | assignment

 WS-AMOUNT = I-BALANCE * 1.09 | statements

 WS-STATE = ’NEW JERSEY’

Assignment statement

Chapter 5. Program instruction reference 61

END-IF

 IF I-BALANCE NOT NUMERIC

 I-BALANCE = ZERO |

 END-IF |

 | more

 IF I-STATE = ’NY’ | assignment

 WS-AMOUNT = ((I-BALANCE + 10000) * 1.01)) | statements

 WS-STATE = ’NEW YORK’ |

 END-IF |

 |

MOVE statement

The MOVE statement is supported by Migration Utility in two ways. The type of

move is controlled via the EASYTRAN/EZPARAMS MOVENUM= option.

1. When MOVENUM=NATIVE is in effect, the MOVE is generated to use native

COBOL rules.

2. When MOVENUM=EASYT is in effect, the MOVE is generated according to

Easytrieve Plus rules.

The COBOL MOVE statement does not directly correspond to the Easytrieve Plus

MOVE. The COBOL MOVE behaves like the Easytrieve Plus ASSIGN statement.

That is, the field types are considered and converted during the move, while the

Easytrieve Plus MOVE statement moves data as is (without conversion).

The MOVE statement transfers data strings from one storage location to another.

The MOVE statement is specially useful for moving data without conversion and

for moving variable-length fields. There are two MOVE statement formats.

Format 1

�� MOVE &SENDFILE

&SENDRECORD

&SENDFIELD

&SENDLITERAL

&START-POS

&SEND-LENGTH
 TO �

� &RECEIVEFILE

&RECEIVERECORD

&RECEIVEFIELD

&START-POS

&RECEIVE-LENGTH
 �

�
FILL

’&FILLCHR’
 �

�
MASK

’&MASK’

HEX

FILL

&FILLCHR

LENGTH

&STRING-LENGTH

 ��

Parameters

Source data identifier

You can use one of the following values:

&SENDFILE

A file name defined in the Library Section. Referencing a file name

results in a move of the current file record.

&SENDRECORD

A record name or working storage area

Assignment statement

62 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

&SENDFIELD

A currently available field name

&SENDLITERAL

A literal. Alphanumeric literals must be enclosed in quotation

marks.

&START-POS

Start position within the sending field. This is a special Migration Utility

feature not supported by Easytrieve Plus.

&SEND-LENGTH

Length of the sending field. It can be a numeric literal or a field name.

Target location identifier

You can use one of the following values:

&RECEIVEFILE

A file name defined in the Library Section. Referencing a file name

results in a move into the current file record.

&RECEIVERECORD

A record name or working storage area

&RECEIVEFIELD

A currently available field name

&START-POS

Start position within the receiving field. This is a special Migration Utility

feature not supported by Easytrieve Plus.

&RECEIVE-LENGTH

Length of the receiving field. It can be a numeric literal or a field name.

&FILLCHR

A pad character. This character is used to pad the target object if the

sending object is shorter than the receiving object. The default is spaces.

&MASK

A mask for the receiving field. (This is a Migration Utility extension to

MOVE.)

 The mask can be:

v Any valid edit mask with insert characters up to 30 characters long.

v “HEX” for conversion to hexadecimal.

The sending field can be a numeric or an alphanumeric field. The receiving

field must be an alphanumeric field (a type A field).

 When you use ’&MASK’, the contents of the sending field are edited into

the receiving field according to the mask.

 When you specify HEX, the contents of the sending field are converted to

the hexadecimal equivalent and placed into the receiving field.

 If you do not specify a mask, the contents of the sending field are edited

into the receiving field according to the default mask of the sending field.

 The MASK option is useful for formatting fields for a spreadsheet or for

inserting special characters into a data string.

MOVE statement

Chapter 5. Program instruction reference 63

&FILLCHR

A pad character. This character is used to replace trailing spaces in

&RECEIVEFIELD. Trailing spaces are replaced for alphanumeric masks

only.

 For example:

FIELDA W 10 VALUE ’12345’

FIELDB W 10 VALUE SPACES

MOVE FIELDA TO FIELDB MASK ’X(10)’ FILL ’*’

After completion, FIELDB contains 123456****.

&STRING-LENGTH

After the MOVE statement has been completed, contains the length of

&RECEIVEFIELD, excluding the trailing spaces.

 Can be a binary, display, or packed decimal field.

 If FILL &FILLCHR are specified, &STRING-LENGTH contains the length of

&RECEIVEFIELD, excluding the &FILLCHR pad character.

 For numeric masks, &STRING-LENGTH contains the length of &MASK.

 Example 1:

FIELDA W 10 VALUE ’123456’

FIELDB W 10 VALUE SPACES

WLENGTH W 2 B

MOVE FIELDA TO FIELDB MASK ’X(10)’ FILL X’*’ LENGTH WLENGTH

After completion, FIELDB contains 123456**** and WLENGTH contains 6.

 Example 2:

FIELD1 W 10 VALUE ’123456’

FIELD2 W 10 VALUE SPACES

WLENGTH W 2 B

MOVE FIELD1 TO FIELD2 MASK ’ZZZ,ZZ9’ LENGTH WLENGTH

After completion FIELD2 contains 123,456 and WLENGTH contains 7.

The following example show the effect of using a mask:

FIELD-1 W 5 N VALUE -123 MASK (’99-99-99’)

FIELD-2 W 10 A VALUE SPACES

FIELD-3 W 10 A VALUE SPACES

FIELD-4 W 10 A VALUE SPACES

FIELD-5 W 10 A VALUE SPACES

MOVE FIELD-1 TO FIELD-2 MASK ’----9’

MOVE FIELD-1 TO FIELD-3 MASK HEX

MOVE FIELD-1 TO FIELD-4 MASK

MOVE FIELD-1 TO FIELD-5 MASK ’ZZZZZCR’

After the move, the contents of the receiving fields are:

FIELD-2 -123

FIELD-3 F0F0F1F2D3

FIELD-4 00-01-23

FIELD-5 123CR

MOVE statement

64 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Format 2

��

MOVE

NULL

SPACE

SPACES

ZERO

ZEROS

ZEROES

TO

�

&RECEIVEFIELD

��

Parameters

The first parameter identifies the sending data area.

The default length is the length of the receiving field. Moving SPACE or

SPACES fills the field with all spaces. Moving NULL fills the field with

low values, and moving ZERO, ZEROES or ZEROS moves all zeros to the

field.

&RECEIVEFIELD

One or more receiving fields. The receiving field is set to the proper data

format. However, you cannot move spaces into a packed field or a binary

field.

Easytrieve Format 1 data is moved from left to right as if both areas were

alphanumeric. The data moved is not converted. It is moved as is, even if the from

and to fields are packed or binary fields.

When MOVENUM=NATIVE is in effect, Migration Utility Format 1 generates

standard COBOL MOVEs. The data is moved according to the standard COBOL

Conversion rules so a move from a binary field into a display numeric field results

in data conversion from binary to Display Numeric format, yielding a result that

differs from the Easytrieve MOVE. Compatible results can be achieved by

redefining the numeric field as an alpha field and using the alpha field name as

the source or target in the MOVE statement.

MOVE statement

Chapter 5. Program instruction reference 65

MOVE LIKE statement

The MOVE LIKE statement moves the contents of fields with identical names from

one file, record or working storage to another. Data movement and conversion

follow the rules of the Assignment statement.

When MOVENUM=EASYT is in effect, Migration Utility generates an internal

ASSIGN statement for each elementary field. This method is compatible with

Easytrieve Plus.

When MOVENUM=NATIVE is in effect, Migration Utility generates a standard

COBOL move. This method may exhibit different behavior than Easytrieve Plus

when a 1-byte or 3-byte binary field or a packed unsigned field is moved into an

incompatible field type. This method is compatible with Migration Utility Version

1.

�� MOVE LIKE &SENDFILE

&SENDRECORD
 TO &RECEIVEFILE

&RECEIVERECORD
 ��

Parameters

Source file identifier

You can use one of:

&SENDFILE

A file name defined in the Library Section. Referencing a file name

results in the move of the current file record.

&SENDRECORD

A record name or working storage area.

Target location identifier

You can use one of :

&RECEIVEFILE

A file name defined in the Library Section. Referencing a file name

results in the move into the current file record.

&RECEIVERECORD

A record name or working storage area

The moves are generated starting with the last target field backward. Thus, the

order in which overlapping fields are defined is important.

PUT statement

The PUT statement writes a record to an output sequential file. It also adds

consecutive records to a VSAM Indexed or Relative file.

�� PUT &OUTFILE FROM &FILE

FROM

&AREA

STATUS
 ��

Parameters

MOVE LIKE statement

66 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

&OUTFILE Output file name

Input source You can use one of:

 FROM &FILE

 FROM &AREA

For variable-length records, the length of the output record is equal

to the length of the input record. For fixed-length records, the

output file record is a fixed-length as defined in the library section.

If the FROM object length is shorter than the output record, only

the length of the input object is moved. The remaining length

remains uninitialized.

STATUS Specify if you want to test for a successful I/O. Normally, zero in

the file status indicates a successful I/O and a non-zero indicates

an I/O error.

WRITE statement

The WRITE statement writes a record to an output INDEXED or RELATIVE file in

random mode.

�� WRITE &OUTFILE UPDATE FROM &FILE

ADD

FROM

&AREA

DELETE

STATUS
 ��

Parameters

&OUTFILE

The output file name must be a VSAM Indexed or Relative file. The

UPDATE option must be coded on the FILE statement in the Library

Section.

I/O operation

This can be UPDATE, ADD or DELETE.

The name of the input source

&FILE is the file name, &AREA is the area name. For variable-length

records, the length of the output record is equal to the length of the input

record. For fixed-length records, the output file record is of a fixed-length

as defined in the Library Section. If the FROM object length is shorter than

the output record, only the length of the input object is moved, and the

remaining length remains uninitialized.

STATUS

Specify if you want to test for a successful I/O. Normally a zero in the file

status indicates a successful I/O and a non-zero indicates an I/O error.

PUT statement

Chapter 5. Program instruction reference 67

GET statement

The GET statement reads the next sequential record from the specified file.

�� GET &FILE :

PRIOR
 HOLD

NOHOLD

STATUS
 ��

Parameters

&FILE The name of the input file to be read.

PRIOR Reads the previous record from the named file. If the position in

the file is not established, the last record on the file is read.

 PRIOR is not supported by Migration Utility.

HOLD Protects the record from a concurrent update

NOHOLD Does not protect the record from a concurrent update.

STATUS Specify if you want to test for a successful I/O. Normally, zero in

the file status indicates a successful I/O and a non-zero indicates

an I/O error.

HOLD and NOHOLD are not supported by Migration Utility. Such amenities can

be accomplished via JCL DISP= parameter and VSAM SHARE Options.

You must test for End OF File (EOF) or file presence (IF &FILE) to ensure record

availability.

READ statement

The READ statement performs RANDOM access to INDEXED and RELATIVE

VSAM files.

�� READ &FILE KEY &FIELD

’&LITERAL’
 HOLD

NOHOLD

STATUS
 ��

Parameters

&FILE The name of the input file to be read

&FIELD A field name that contains the file key to be read

&LITERAL A literal that identifies a record on the file

HOLD Protects the record from a concurrent update

NOHOLD Does not protect the record from a concurrent update.

STATUS Specify if you want to test for a successful I/O. Normally, zero in

the file status indicates a successful I/O and a non-zero indicates

an I/O error.

GET statement

68 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

HOLD and NOHOLD are not supported by Migration Utility. Such amenities can

be accomplished via JCL DISP= parameter and VSAM SHARE options.

The &FIELD is normally a working storage field or a field in another file. The

contents of the &FIELD must be established before READ is issued.

You can use file presence (IF &FILE) to ensure a successful read.

POINT statement

The POINT statement establishes the position in an INDEXED or RELATIVE file

for subsequent sequential retrieval. The data is available only after the next

sequential retrieval.

�� POINT &FILE

PRIOR
 EQ

=

GE

GQ

>=

 &FIELD

’&LITERAL’

STATUS
 ��

Parameters

&FILE Name of input file. It must be an INDEXED or RELATIVE VSAM

file.

PRIOR Specify PRIOR if you want to use PRIOR on the GET statement.

See “GET statement” on page 68for more information.

Note: PRIOR is not supported by Migration Utility.

Relational operator for search condition

= and EQ search for the exact key value, GE, GQ and >= search for

the first key that is greater than or equal to the key value.

&FIELD A field name that contains the file key to be searched.

&LITERAL A literal that identifies a record on the file

STATUS Specify if you want to test for a successful I/O. Normally, zero in

the file status indicates a successful I/O and a non-zero indicates

an I/O error.

&FIELD is normally a working storage field or a field in another file. The contents

of &FIELD must be established before POINT is issued.

For the KSDS file, the field length or literal value must have the same length as the

file key. For the RELATIVE files, the key must be a 4-byte binary integer field.

You cannot use file presence (IF &FILE) to ensure a successful point.

PRIOR is not supported by Migration Utility.

READ statement

Chapter 5. Program instruction reference 69

SEARCH statement

The SEARCH statement accesses external or instream table information. Special

tests of the IF statement can be used to validate the results of SEARCH.

�� SEARCH &TBNAME WITH &SEARCHARG GIVING &RESULT ��

Parameters

&TBNAME Name of the TABLE (FILE) that describes table resources

&SEARCHARG

Identifies the field containing the search argument

&RESULT Identifies the receiving field into which data is retrieved

&SEARCHARG is normally a working storage field or a field in another file. The

contents of &SEARCHARG must be established before SEARCH is issued.

You can use file presence (IF &FILE) to ensure a successful read.

PERFORM statement

The PERFORM statement executes a procedure, and, after execution, returns to the

next statement after PERFORM.

�� PERFORM &PROCNAME ��

Parameters

&PROCNAME The name of the Procedure to be executed

PERFORM statements in a procedure can invoke other procedures; however,

recursion is not permitted. Recursion can cause unpredictable results.

SEARCH statement

70 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

DISPLAY statement

The DISPLAY statement formats and transfers data to a system output device or to

a file.

�� DISPLAY &FILE

SYSPRINT
 TITLE

NOTITLE

SKIP

&SKIP

CONTROL

&POSITION

 �

� Position information

HEX

&SRCFILE

&FIELD

&RECORD

 ��

Position information:

 &FIELD

&LITERAL

+

OFFSET

-

OFFSET

COL

&COLUMN

POS

&POSITION

Parameters

&FILE A sequential file name. Use a file name if you want to write data to

a file.

SYSPRINT Directs output to the system output device. Migration Utility

normally displays to the SYSLIST system file.

Report title control:

TITLE Specify TITLE if you want to print a report title for

the display coded in a report exit. TITLE will skip

to a new page on page overflow and print report

titles if any.

NOTITLE Specify NOTITLE if you want to skip to a new

page but inhibit printing of the report title.

&SKIP An integer from 0 to ″N″. The number of lines to be skipped before

printing. Zero overlays the existing display line.

 Migration Utility &skip integer range is 0 to 3.

&CC The print carriage control for controlling spacing. Valid characters

are 0 through 9, +, -, A, B, or C depending on the make and model

of the printer.

&SRCFILE The name of a file whose record is to be displayed. Specifying the

name results in displaying the most current record contained in the

file.

&RECORD Specifies a record or working storage area to be displayed.

&FIELD Specifies a field name to be displayed.

&LITERAL A character string (literal) to be displayed. Alphanumeric literal

must be enclosed in quotation marks.

DISPLAY statement

Chapter 5. Program instruction reference 71

OFFSET The space adjustment parameters modify the normal spacing

between display items. + or − indicate the direction in which the

spacing is adjusted.

&COLUMN Specifies the print column number where the next display item is

to be placed. The number can be from 1 to nn, but it cannot force

the next line item beyond the end of the line.

&POSITION Specifies the position of display line items in respect to the items

on line 1 within report procedures. The position corresponds to the

line item number of line 1 under which the line item is placed.

Unless positioning is specified, the first data entry of each display line begins in

column 1. Each data item that follows is printed following the previous one with

no spaces between data items.

HEX produces five formatted 100-byte lines per record/field.

When DISPLAY is used in the REPORT procedure, the output line is always in the

appropriate place in that report, unless you specify a print file that is not the

report file to which the procedure applies.

The displayed data is in an edited format. Thus, displaying to an edited file will

result in a file that contains edited fields.

Easytrieve Plus does not allow DISPLAY HEX in Report Exits. Migration Utility

does allow it, but if ″SEQUENCE″ is coded on the report statement, Migration

Utility issues a warning message about potential ″Undesired″ Sort File record

length.

Warning: Doing DISPLAY HEX for SEQUENCE-d reports in report exits can result

in large Sort File record length and processing overhead. Use it with

caution.

Examples

 DISPLAY ’CURRENT BALANCE ’ WS-CURRENT-BALENCE

 DISPLAY HEX FILEIN-RECORD

 DISPLAY PRINTER1 CONTROL 1 HEX FILEIN-RECORD

DISPLAY statement

72 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

CALL statement

The CALL statement allows you to invoke subprograms written in a language

other than Easytrieve.

�� CALL &PROGRAM �

�

�

USING

(

&FIELD

)

’

&LITERAL

’

RETURNS

&RCODE

 ��

Parameters

&PROGRAM Name of program to be invoked. From one to 8 characters.

Parameters for passing to the subprogram:

 &FIELD

 &LITERAL

&RCODE The field name for the Return Code returned by the called

program. It must be a valid numeric field. The COBOL Return

Code can be always found in the COBOL RETURN-CODE field.

RETURNS is supported by Migration Utility but is not needed.

Easytrieve calls programs dynamically.

Migration Utility generates program calls as follows:

v Generates a static call when the program name is enclosed in quotation marks.

v Generates a dynamic call when the program name is not enclosed in quotation

marks.

Examples

 CALL FSABE01

 CALL FSABE01 USING (’1000’ PROGRAM-NAME)

CALL statement

Chapter 5. Program instruction reference 73

GOTO statement

The GOTO statement alters the flow of processing.

�� GOTO

GO TO
 &LABEL

JOB
 ��

Parameters

&LABEL Specify a label in the current JOB Activity Section to which control

is to be transferred. Processing continues with the first statement

following the named label.

JOB Transfer control back to the first statement of the current JOB

activity. When processing the automatic file input, GOTO JOB

results in a read of the next sequential record on the input file.

Example

 FILE FILEIN1 (80) |

 CUST-NAME 01 15 A HEADING (’NAME’) |

 CUST-ADDRESS1 16 15 A HEADING (’ADDRESS1’) | Library Section

 CUST-ADDRESS2 32 15 A HEADING (’ADDRESS2’) |

 CUST-ADDRESS3 48 15 A HEADING (’ADDRESS3’) |

 JOB INPUT FILEIN1

 IF CUST-NAME = ’JOHN DOE’

 GOTO PRINT-DATA | Activity Section

 ELSE |

 GOTO JOB |

 END-IF | with

 |

 PRINT-DATA. | GOTO statements

 PRINT REPORT1

 GOTO JOB

 REPORT REPORT1 LINESIZE 080

 TITLE 01 ’NAME-ADDRESS REPORT EXAMPLE’ |

 LINE 01 CUST-NAME | REPORT definitions

 CUST-ADDRESS1 |

 CUST-ADDRESS2 |

 CUST-ADDRESS3 |

GOTO statement

74 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

STOP statement

The STOP statement terminates current job activity or program execution.

�� STOP

EXECUTE
 ��

Parameter

EXECUTE Immediately terminates all processing. This is equivalent to a

Forced-End-of-Job.

STOP without EXECUTE terminates only current job activity. Any other jobs

subsequent to the current one continue processing.

Example

 FILE FILEIN1 (80) |

 CUST-NAME 01 15 A HEADING (’NAME’) |

 CUST-ADDRESS1 16 15 A HEADING (’ADDRESS1’) | Library Section

 CUST-ADDRESS2 32 15 A HEADING (’ADDRESS2’) |

 CUST-ADDRESS3 48 15 A HEADING (’ADDRESS3’) |

 JOB INPUT FILEIN1

 IF FILEIN1:RECORD-COUNT GT 100

 STOP | Activity Section

 END-IF |

 IF CUST-NAME GT ’F’ |

 STOP EXECUTE | with

 END-IF |

 | STOP statements

 PRINT REPORT1

 GOTO JOB |

 REPORT REPORT1 LINESIZE 080

 TITLE 01 ’NAME-ADDRESS REPORT EXAMPLE’ |

 LINE 01 CUST-NAME | REPORT definitions

 CUST-ADDRESS1 |

 CUST-ADDRESS2 |

 CUST-ADDRESS3 |

STOP statement

Chapter 5. Program instruction reference 75

CASE, WHEN, OTHERWISE and END-CASE statements

The CASE statement provide an elegant way to test values.

��

CASE

&FIELD

�

�

WHEN

&CONDITION

Easytrieve Statement

�

�

OTHERWISE

�

Easytrieve Statement

END-CASE

��

Parameters

&FIELD The field name to be evaluated.

&CONDITION Value (&LIT) to be tested for. It must be a literal or &LIT1 THRU

&LIT2.

OTHERWISE Must be the last statement after a series of tests. The statements

following OTHERWISE are executed only when all previous tests

fail.

END-CASE Terminates the CASE

The CASE statement is translated by Migration Utility to COBOL EVALUATE

statement. The OTHERWISE statement is translated to WHEN OTHER of

EVALUATE statement.

DO and END-DO statements

The DO and END-DO statements define the scope of repetitive program logic.

�� DO WHILE

UNTIL
 &CONDITION Easytrieve statements END-DO ��

Parameters

WHILE Evaluates the condition at the top of a group of statements

UNTIL Evaluates the condition at the bottom of a group of statements

&CONDITION Specifies the condition for the continuous execution of the loop.

Refer to “Conditional expressions” on page 78 for conditional

expression syntax.

END-DO Terminates the DO statement

For DO WHILE, the truth value of the conditional expression determines whether

statements bound by the DO END-DO pair are to be executed. When the

CASE, WHEN, OTHERWISE and END-CASE statements

76 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

conditional expression is true, the statements are executed. When the conditional

expression is false, the processing continues with the next statement following the

END-DO.

For DO UNTIL, the statements bound by the DO...END-DO are executed. The

truth value of the conditional expression (evaluated at end of the statements)

determines whether statements bound by the DO...END-DO are to be executed

again. When the conditional expression is true, the statements are executed again.

When the conditional expression is false, the processing continues with the next

statement following the END-DO.

Example

 FILE FILEIN1

 FIELD-A 1 10 A OCCURS 10

 WS-COUNT W 2 N

 JOB INPUT FILEIN1

 WS-COUNT = 1

 DO UNTIL WS-COUNT GT 10

 DISPLAY FIELD-A (WS-COUNT)

 WS-COUNT = WS-COUNT + 1

 END-DO

IF, ELSE, and END-IF statements

The IF statement conditionally controls execution of the statements bound by the

IF...END-IF.

��

IF

&EXPRESSION

�

STATEMENTS-1

�

ELSE

STATEMENTS-2

�

� END-IF ��

Parameters

&EXPRESSION

Conditional expression (see “Conditional expressions” on page 78)

STATEMENTS-1

The statements executed if &EXPRESSION is evaluated to be true.

STATEMENTS-2

The statements executed if &EXPRESSION is evaluated to be false.

If ELSE is not specified, then no statements are executed.

END-IF Terminates the logic associated with the previous IF statement.

DO and END-DO statements

Chapter 5. Program instruction reference 77

Conditional expressions

Conditional expressions are used in combination with the IF and DO statements to

manipulate and select data in the Job Activity section.

When an IF statement is present, the statements following the IF statement are

processed based on the truth of the conditional expression. Statements are

processed until an END-IF or an ELSE statement is encountered.

When a DO statement is present, all statements following the DO statement are

processed, based on the truth of the conditional expression, until and END-DO

statement is encountered.

The IF statement syntax

�� IF &FIELD1 EQ =

NE (not)=

GT >

GE >=

LT <

LE <=

 &FIELD2

LITERAL

Arithmetic Expression

 �

�

�

Statements to be processed for true outcome

�

�

�

ELSE

Statements to be processed for false outcome

 END-IF ��

The DO statement syntax

�� DO WHILE

UNTIL
 &FIELD1 EQ =

NE (not)=

GT >

GE >=

LT <

LE <=

 &FIELD2

LITERAL

Arithmetic Expression

 �

�

�

Statements to be processed for true outcome

END-DO

��

Conditional expressions

78 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Parameters

&FIELD1 A field name used as argument 1 in comparison

&FIELD2 A field name used as argument 2 in comparison. The field must be

of the same type as &FIELD1. So if &FIELD1 is numeric then

&FIELD2 must be numeric.

LITERAL A numeric or an alphanumeric literal, depending on the type of

&FIELD1. Numeric literals can have a leading “+” or “-”. Multiple

literals can be listed. Also, the THRU statement can be used to

denote a range of low to high values.

Arithmetic Expression

Can be any arithmetic expression. Valid only when &FIELD1 is

numeric.

The IF statement bit testing

�� IF &FIELD1 ON &FIELD2

HEX LITERAL
 �

�

�

Statements to be processed for true outcome

�

�

�

ELSE

Statements to be processed for false outcome

 END-IF ��

The IF statements can be nested. Migration Utility supports up to NESTS=NN of IF

nests (refer to EXPARAMS NESTS=parameter). Any expressions that contain

unreasonable levels of IF nests have to be split into multiple expressions to satisfy

the limit.

Migration Utility does limited checking for compatible Fields Class of IF

arguments. Any missed non-compatible arguments are flagged by the COBOL

compiler.

Conditional expressions should be kept as simple as possible. More complex

expressions are harder to understand and, sometimes, can lead to absurd

outcomes.

Easytrieve allows comparison on a range of values via a THRU statement. The

THRU range is translated by Migration Utility to a COBOL equivalent expression,

depending on the last interpreted relational/logical operator.

Conditional expressions

Chapter 5. Program instruction reference 79

For example, Easytrieve statement

 IF FIELDA EQ 10 THRU 55

is converted to COBOL as

 IF (FIELDA NOT > 55 AND NOT < 10)

whereas

 IF FIELDA NE 10 THRU 55

is converted to COBOL as

 IF (FIELDA < 10 AND > 55)

Easytrieve allows comparison on a list of values. The list is translated by Migration

Utility to a COBOL equivalent expression, depending on the last interpreted

relational/logical operator.

For example, Easytrieve statement

 IF FIELDA EQ 10, 15, 20, 25

is converted to COBOL as

 IF (FIELDA = 10 OR 15 OR 20 OR 25)

whereas

 IF FIELDA NE 10, 15, 20, 25

is converted to COBOL as

 IF (FIELDA NOT = 10 AND 15 AND 20 AND 25)

There are some differences in the way COBOL and Easytrieve Plus evaluate the IF

statement. For example, Easytrieve Plus compares alphanumeric fields using the

length of the first argument, whereas COBOL considers the length of both

arguments. When converting existing Easytrieve Plus programs, you should

perform several parallel runs to ensure the output is the same.

The table below lists allowed Relational and Logical Operators, allowed in

Easytrieve, and their equivalent in COBOL as translated by Migration Utility.

 Easytrieve COBOL Explanation

 EQ = Test for Equal condition

 = =

 NE NOT = Test for Not Equal condition

 NQ NOT =

 *= NOT =

 LT < Test for Less Than condition

 LS <

 < <

 *< NOT < Test for Not Less Than condition

 LE NOT > Test for Not Greater condition

 LQ NOT >

 <= NOT >

Conditional expressions

80 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

GT > Test for Greater Than condition

 GR >

 > >

 *> NOT >

 GE NOT < Test for Greater or Equal condition

 GQ NOT <

 >= NOT <

 OR OR Logical Operator OR

 AND AND Logical Operator AND

 NOT NOT Logical Operator NOT

 AND NOT AND NOT Logical Operator AND NOT

 OR NOT OR NOT Logical Operator OR NOT

Examples

Here are some examples of IF and END-IF statements:

 FILE FILEIN1

 I-BALANCE 1 5 N 2

 WS-AMOUNT W 5 N 2

 JOB INPUT FILEIN1

 WS-AMOUNT = 0

 IF I-BALANCE > 5000 | Non-nested

 WS-AMOUNT = I-BALANCE * 1.10 |

 ELSE |

 WS-AMOUNT = I-BALANCE * 1.09 | IF statement

 END-IF

 IF I-BALANCE > (WS-AMOUNT + 55)

 WS-AMOUNT = I-BALANCE | Arithmetic in

 ELSE |

 WS-AMOUNT = I-BALANCE * 1.55 | IF statement

 END-IF

 IF I-BALANCE NOT NUMERIC

 DISPLAY ’BALANCE NOT NUMERIC’ |

 DISPLAY HEX I-BALANCE |

 ELSE | Nested

 IF I-BALANCE EQ 5000, 5500, 5200 |

 WS-AMOUNT = I-BALANCE * 1.10 |

 ELSE | IF statements

 WS-AMOUNT = I-BALANCE * 1.09 |

 END-IF |

 END-IF

Conditional expressions

Chapter 5. Program instruction reference 81

PRINT statement

The PRINT statement produces report output.

�� PRINT

&REPORT
 ��

Parameter

&REPORT REPORT name specified on a report statement. If not supplied, it is

assumed to be the first report defined in the JOB activity.

In general, report output is not written directly to a report’s printer file. Formatting

and printing is typically deferred until end of JOB activity and perhaps after

sorting.

When a work file is specified for a report, executing PRINT causes fixed format

records to be spooled to the work file. The format of the fields is determined by

Easytrieve.

Migration Utility generated COBOL program uses similar concepts when the

SEQUENCE statement is included in the REPORT group. However, if the

SEQUENCE is not specified, the report is produced directly to the printer. Sort is

not invoked.

Example

 FILE FILEIN1 (80) |

 CUST-NAME 01 15 A HEADING (’NAME’) |

 CUST-ADDRESS1 16 15 A HEADING (’ADDRESS1’) | Library Section

 CUST-ADDRESS2 32 15 A HEADING (’ADDRESS2’) |

 CUST-ADDRESS3 48 15 A HEADING (’ADDRESS3’) |

 JOB INPUT FILEIN1

 PRINT REPORT1 |

 |

 REPORT REPORT1 LINESIZE 080 |

 TITLE 01 ’NAME-ADDRESS REPORT EXAMPLE’ | Activity Section

 LINE 01 CUST-NAME + |

 CUST-ADDRESS1 + |

 CUST-ADDRESS2 + |

 CUST-ADDRESS3 |

PROC and END-PROC statements

The PROC statement defines the beginning of a procedure in a JOB or SORT

Activity Section. The END-PROC terminates the scope of the PROC.

A procedure can be perceived as a group of statements that perform a specific

processing function.

PRINT statement

82 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

��

&PROCNAME.

PROC

�

STATEMENTS

END-PROC

��

Parameters

&PROCNAME A label that identifies the procedure. It can:

 Be 128 characters in length

 Contain any character other than a delimiter

 Begin with A-Z, 0-9, or a national character (#, @, $)

 Not consist of all numeric characters

STATEMENTS Any Easytrieve statements that are valid in the JOB or SORT

Activity Section

END-PROC Indicates the end of the defined procedure. END-PROC is required

for each declared procedure name.

File I/O statements such as PUT or GET cannot be coded in procedures coded

during SORT or REPORT processing.

Perform statement can be used to invoke other procedures from any given proc.

Recursion is not permitted.

COBOL paragraph names can be 1 to 30 characters in length. All paragraph names

longer than 30 characters are truncated by Migration Utility to conform to COBOL

Standards.

RETRIEVE statement

The RETRIEVE statement identifies the IMS/DLI database records that are input to

the JOB activity.

The RETRIEVE statement is described in detail in Chapter 8, “DLI/IMS support,”

on page 125.

SELECT statement (SORT and REPORT selection)

The SELECT statement can be coded in REPORT-INPUT procedure or BEFORE

procedure of a SORT statement.

�� SELECT ��

When coded in REPORT-INPUT procedure, it must be used to select records of

interest. Only those records marked SELECT are passed on for printing. If

REPORT-INPUT procedure is not coded, then SELECT cannot be used for selecting

report records, however, all records are selected in such cases.

When coded in BEFORE procedure of a SORT statement, it must be used to select

records of interest from the input file (file being sorted). Only those records

marked SELECT are returned to the sort for further processing.

PROC and END-PROC statements

Chapter 5. Program instruction reference 83

Example

FILE FILEIN1 (80) |

 INPT-NAME 01 15 A HEADING (’NAME’) |

 INPT-ADDRESS1 16 15 A HEADING (’ADDRESS1’) | Library Section

 INPT-ADDRESS2 32 15 A HEADING (’ADDRESS2’) |

 INPT-ADDRESS3 48 15 A HEADING (’ADDRESS3’) |

 FILE SORTED1 (80) |

 SORT-NAME 01 15 A HEADING (’NAME’) |

 SORT-ADDRESS1 16 15 A HEADING (’ADDRESS1’) | Library Section

 SORT-ADDRESS2 32 15 A HEADING (’ADDRESS2’) |

 SORT-ADDRESS3 48 15 A HEADING (’ADDRESS3’) |

 SORT FILEIN1 TO SORTED1 USING (INPT-NAME) +

 BEFORE INPUT-SORT-EXIT | SORT statements

 INPUT-SORT-EXIT. PROC

 IF INPT-NAME = ’JOHN DOE’ |

 SELECT | BEFORE sort procedure

 END-IF |

 END-PROC. |

 |

 JOB INPUT SORTED1

 PRINT REPORT1 |

 |

 REPORT REPORT1 LINESIZE 080 |

 TITLE 01 ’NAME-ADDRESS REPORT EXAMPLE’ | Report statements

 LINE 01 SORT-NAME + |

 SORT-ADDRESS1 + |

 SORT-ADDRESS2 + |

 SORT-ADDRESS3 |

 REPORT-INPUT. PROC

 IF SORT-NAME = ’JOHN DOE’ |

 SELECT | REPORT-INPUT procedure

 END-IF |

 END-PROC. |

System-defined fields

Easytrieve provides three categories of system-defined fields:

v General fields

v File related fields

v Report related fields

The fields for each category are described in the sections that follow. Fields not

described are not supported by Migration Utility.

General fields (available globally)

CHKP-STATUS

A 2-byte alpha field returned by DLI after a CHKP and XRST call. This

field contains spaces for a successful call. Any other value indicates an

error. Refer to IMS/DLI Messages and Codes in the IBM IMS/DLI

reference for specific values.

PATH-ID

2-character path ID for DLI/IMS, available after the RETRIEVE statement.

This field contains the last segment ID that was retrieved by the RETRIEVE

statement. Note that an optional 2-character ID can be supplied for each

segment in the RETRIEVE statement. PATH-ID contains spaces if there is

no ID specified for the last retrieved segment in the path.

SELECT statement (SORT and REPORT selection)

84 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

When using a tickler file to retrieve unique segments, PATH-ID is set to NF

for the ’record not found’ condition, otherwise it contains the ID of the last

accessed segment.

RETURN-CODE

A 4-byte binary field which is returned to the MVS™ operating system at

end of job (program termination).

SYSDATE

An 8-byte date field in MM/DD/YY format. The date is obtained at the

start of program execution.

 Easytrieve replaces the leading zero by a space when printing on Report

Headings or Detail Lines.

 Migration Utility replaces the leading zero by a space when printing on

Report Headings only. The leading zero is printed on Detail Lines,

however.

SYSDATE-LONG

A 10-byte date field in MM/DD/CCYY format. The date is obtained at the

start of program execution.

 See SYSDATE above for printing rules.

SYSTIME

An 8-byte time field in HH:MM:SS format. The time is obtained at the start

of program execution.

 See SYSDATE above for printing rules.

File fields (available globally in each activity section)

FILE-STATUS

this is a read only field that contains the status of the most recent I/O

operation. File-status is available when status is coded on the I/O

statement.

Note: FILE-STATUS is always available in the generated COBOL program.

The Easytrieve status codes are:

0000 Operation is successful

0004 End Of File Reached (EOF)

0008 Record with a duplicate alternate key exists

0012 Duplicate key

0016 Record not found

0020 File is Locked (work stations only)

0024 Logical or physical I/O error

For information about converting COBOL status codes to Easytrieve

equivalent codes, refer to the IOCODE=EASYT option on page 200.

FILE-STATUS customization applies only when running with

IOCODE=NATIVE.

 In general, testing for ZERO, NOT ZERO or EOF is sufficient. Testing for

any other specific values must be adjusted manually in Easytrieve Source

or the translated COBOL programs. The COBOL values can be found in

the COBOL Programmer Reference Manual (FILE-STATUS information).

System-defined fields

Chapter 5. Program instruction reference 85

FILE-STATUS code in the generated COBOL program is a 2-byte

alphanumeric field while in Easytrieve it is a fullword numeric field.

Instructions in Easytrieve Program that assign FILE-STATUS to a numeric

field are flagged as errors.

 When testing for a value other than zero, the value must be a 2-digit

constant (literal) enclosed in quotation marks. Here are some of the more

frequently checked COBOL status codes:

00 Operation is successful

02 Record with a duplicate alternate key exists (Read)

04 Wrong Length Record

10 End Of File Reached (EOF)

22 Duplicate Key (Write)

23 Record not found

30 Permanent I/O Error

34 Permanent I/O error, file is full (out of space)

39 Incompatible File DCB / Organization

96 DD Statement is missing in JCL (VSAM only)

RECORD-COUNT

A read-only 4-byte binary field that contains the number of logical input

operations performed.

RECORD-LENGTH

A 4-byte binary field available for all file types. It contains the length of the

last accessed or written file record. For variable-length records, the field

contains only the length of the data (the 4 length-related bytes are

excluded). For variable-length records, the length must be assigned before

the WRITE or PUT operations.

 Report fields (available only in report exits)

BREAK-LEVEL

Indicates the break level number

&field BREAK

Tests control break on &field field, where &field is ″FINAL″ or a

CONTROL field name.

&FILE:KEY

The file key of RRN and PDS/PDSE files can be accessed by coding the file

name as a qualifier to the KEY field. For example: FILEIN:KEY.

LEVEL

Indicates the control break level. This field is available on the “

BEFORE-BREAK” and “AFTER-BREAK” report exits only.

LINE-COUNT

A 2-byte binary field that contains the number of lines printed on the

current page.

LINE-NUMBER

A 2-byte field that contains the number of the line being printed within the

line group.

Note: This counter is not supported by Migration Utility.

PAGE-COUNT

A 2-byte binary field that contains the number of the page being printed.

System-defined fields

86 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

TALLY

A 10-byte packed decimal field that contains the number of detail records

in a control break

WS-PENGI-DATE-9

A 6-digit date (SYSDATE) as obtained by a COBOL ACCEPT statement

without insert characters. This is a numeric field and can be used in

computations. The format is YYMMDD.

WS-PENGI-DATE-LONG-9

An 8-digit date (SYSDATE-LONG) as obtained by a COBOL ACCEPT

statement without insert characters. This is a numeric field and can be

used in computations. The format is CCYYMMDD.

Easytrieve reserved keywords

Keyword Description

EOF Used to test end of file mark. It can optionally be followed by the

file name the test applies to (preferred way of coding). If file is not

supplied, the outcome of the last file accessed in sequential mode

is used.

NUMERIC Used to test data fields for numeric contents

MATCHED Used to test the outcome of synchronized file process. Refer to

“Synchronized file processing” on page 56 for more information.

DUPLICATE Used to test the outcome of synchronized file process. Refer to

“Synchronized file processing” on page 56 for more information.

FIRST-DUP Used to test the outcome of synchronized file process. Refer to

“Synchronized file processing” on page 56 for more information.

LAST-DUP Used to test the outcome of synchronized file process. Refer to

“Synchronized file processing” on page 56 for more information.

SPACE, SPACES

Used to test a field for all spaces or assign a field to all spaces.

ZERO, ZEROS, ZEROES

Used to test a field for all zeros or move all zeros to a field.

LOW-VALUES

Used to test a field for all binary zeros or move all binary zeros to

a field

HIGH-VALUES

Used to test a field for all hex ″FF″ or move all hex ″FF″ to a field.

System-defined fields

Chapter 5. Program instruction reference 87

REPORT statement

The REPORT statement defines the type and characteristics of a report. Multiple

reports can be specified per single JOB Activity Section. REPORT statement with its

parameters is placed at the end of each JOB Activity Section. It also must be

followed by the SEQUENCE, CONTROL, SUM, HEADING, TITLE, and LINE

statements as described on the pages that follow.

�� REPORT

&REPORT

SUMMARY

SUMFILE

&SUMFILE
 �

�
 SUMSPACE 3

SUMSPACE

&SUMSPACE

 TALLYSIZE 5

TALLYSIZE

&TALLYSIZE

DTLCTL

EVERY

FIRST

NONE

�

�
SUMCTL

ALL

DTLCOPY

HIAR

DTLCOPYALL

NONE

TAG

FILE

&WFILE
 �

�
PRINTER

&PRINTER

LABELS

(

ACROSS

&ACROSS

)

DOWN

&DOWN

SIZE

&SIZE

NEWPAGE

 �

�
 PAGESIZE 56 66 LINESIZE 132

PAGESIZE

(

&PAGESIZE

)

LINESIZE

&LINESIZE

&DSPLSIZE

�

�

SKIP

&SKIP

SPACE

&SPACE

TITLESKIP

2

TITLESKIP

&TITLESKIP

CONTROLSKIP

1

CONTROLSKIP

&CONTROLSKIP

 SPREAD

NOSPREAD

NOADJUST

NODATE

NOPATE

NOHEADING

�

�
LIMIT

&LIMIT

EVERY

&EVERY

SHORTDATE

LONGDATE

 ��

Parameters

&REPORT Report name. Easytrieve allows a name of up to 128 characters.

REPORT statement

88 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

||

Because of COBOL restrictions, Migration Utility assigns its own

internal name for each declared report. However, you reference the

name as declared. The internal naming conventions are

REPORTNN, where NN is report sequence number relative to zero.

SUMMARY Prints a summary report by minor control break. The detail report

is not printed.

&SUMFILE A one to eight character Optional Summary File name for

recording Control Break field values and summary totals. All data

is as of minor control break.

&SUMSPACE The number of digits to be added to the size of the summary field

buckets. This is needed to prevent overflow on accumulated

values.

&TALLYSIZE The size of the TALLY field. Valid values are 1 to 18 (digits).

DTLCTL Indicates the printing method of control fields on detail line.

Possible values are:

EVERY Prints value of all control fields on every detail

line.

FIRST Prints value of all control fields on the first detail

line of each page, and on the first detail line after

each control break. Printing of control field values

is inhibited on all other detail lines.

NONE Inhibits printing of control fields on every detail

line

SUMCTL Indicates printing method of control fields on total lines. Possible

values are:

ALL Prints control field values on every total line

HIAR Prints control field values in the hierarchical

fashion on the total lines. Only values of control

fields on the same hierarchical level, or higher than

the breaking control field, are printed on the

related total line.

NONE Inhibits printing of control fields on total lines.

TAG Prints &FIELD TOTAL annotation to the left of the totals. Keep in

mind that there must be enough space, on the left, for the totals

literal. &FIELD is the field name that caused the break.

DTLCOPY Prints detailed information about minor level total lines.

DTLCOPYALL

Prints detailed information on all control breaks. (This option is not

supported by Migration Utility)

&WFILE Work file ddname. This statement is ignored by Migration Utility.

&PRINTER Printer file ddname. Normally Easytrieve directs all reports to the

SYSPRINT. This statement lets you redirect output to a designated

file. Make sure you define the file in the Library Section.

 When a printer file is not specified, the report is written to a file

specified by the PRINTER= EASYTRAN/EZPARAMS option. For

example, when PRINTER=SYSPRINT is in effect, the report is

written to SYSPRINT, when PRINTER=AUTOGEN is in effect, an

internal printer file is generated, when PRINTER=REPORT0 is in

effect, the report is written to the REPORT0 file.

REPORT statement

Chapter 5. Program instruction reference 89

Note that Migration Utility Version 1 always defaulted to

PRINTER=AUTOGEN. There was no override.

LABELS Identifies mailing label printing. Possible values are:

&ACROSS A number indicating the number of labels printed

across the page

&DOWN Specifies the number of print lines for each label

&LSIZE Specifies the horizontal length of each label

NEWPAGE Forces top of page (channel 1) for first label line

The NOHEADING and NOADJUST options are automatically

activated for LABELS type of reports. You cannot use TITLE,

HEADING and SUMMARY when you print labels.

&PAGESIZE The number of lines per logical printed page. It can be 1 to 32767

and it must be at least as large as the sum of:

 Number of the TITLE Lines

 Number of TITLESKIP

 Number of HEADING lines plus 1

 Number of LINE statements

 Number of lines of SKIP

&DSPLSIZE Number of lines for each logical page for DISPLAY statements in

report exits. If not coded, the default is the &PAGESIZE (if

supplied), or as coded in the EASYDTAB default table.

&LINESIZE The length of the printed line from 1 to 32767. One extra character

is added, by the compiler, for print carriage control.

&SKIP The number of blank lines to insert between line groups, that is,

before the last printed LINE NN and the first LINE 01. This

statement is ignored by Migration Utility.

&SPACE The default number of spaces (blank characters) between print

fields. Note that the amount of space that each field occupies is the

field (edited) length or the field Title, whichever is longer. The

SPREAD parameter overrides this option.

&TITLESKIP The number of blank lines between the last TITLE line and the first

HEADING line. The default is 2 lines.

&CTLSKIP The number of blank lines between the last total line and the first

detail line (detail line post totals).

SPREAD Insert maximum number of spaces between fields (columns).

NOSPREAD Deactivates the SPREAD option.

NOADJUST Deactivates automatic centering of report TITLES and LINES.

When specified, all printed lines are left justified on the page.

NOADJUST and SPREAD are mutually exclusive.

NODATE Inhibits printing of System Date (CPU date) on the first title line.

NOPAGE Inhibits printing of the Page Number (PAGE nnnnn) on the first

title line.

NOHEADING

Inhibits printing of the column (field) headings. If this option is not

specified, column headings are automatically printed.

&LIMIT The maximum number of lines to print. This is a development

option. It is ignored by Migration Utility.

REPORT statement

90 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

||
|
|

&EVERY Every &EVERYth line is to be printed. This is a development

option. It is ignored by Migration Utility.

SHORTDATE The SYSDATE date format is to be used.

LONGDATE The SYSDATE-LONG date format is to be used.

SEQUENCE statement

The SEQUENCE statement optionally defines the order of a report. The

SEQUENCE must be coded Immediately following the REPORT statement. When

SEQUENCE is coded, REPORT data is sorted in the specified order before printing.

��

SEQUENCE

�

&FIELD

D

��

Parameters

&FIELD One or more field names to sort by. A maximum of 16 fields can be

sorted. The fields are sorted in major to minor order as listed.

D The field is sorted in descending order. If not specified, the field is

sorted in ascending order.

The SEQUENCE statement causes sorting of the report items before printing. The

sort adds a substantial amount of processing overhead, therefore the SEQUENCE

should be used with care. SEQUENCE is not needed if your input file is in the

same order as your reports.

SEQUENCE fields do not have to be a part of the printed report.

CONTROL statement

The CONTROL statement identifies the fields used for control breaks. That is, a

total line is printed for each field identified by the CONTROL statement.

The fields are listed in major to minor sequence. The first listed field is the major

control break and the last one the most minor control break. The final total can be

printed by specifying the ″FINAL″ keyword as the first entry in the CONTROL list.

��

CONTROL

�

 FINAL

&FIELD

NEWPAGE

NOPRINT

RENUM

��

Parameters

REPORT statement

Chapter 5. Program instruction reference 91

FINAL The Final totals are to be printed at End-of-Report. If omitted, Final

totals are implied.

&FIELD Control break fields in major to minor order. You can specify up to

16 fields.

NEWPAGE Forces new page post control break totals for the specified field.

RENUM The same as NEWPAGE except it resets page counter to 1

following the control break.

NOPRINT Suppresses printing of the total line for the specified field. Note

that all processing to accommodate the total line is performed, but

the line is not printed.

A maximum of 16 control breaks can be specified. The FINAL break is implied

when no control fields are supplied.

A break level number is assigned to each control break field, with most minor

break assigned to level 1, the one before it to 2, and so on. Final control break has

the highest level number of N+1, where N is the number of fields specified.

A Level can be tested via the LEVEL keyword in the BEFORE-BREAK and

AFTER-BREAK report exits. See “Report exits” on page 95 for details.

All fields are compared according to the field type. For example, packed numeric

fields are compared as packed decimals with sign.

SUM statement

The SUM statement explicitly names the fields to be totaled for a report with

control breaks.

��

SUM

�

&FIELD

��

Parameter

&FIELD A list of one or more fields to be summed. The fields must be

quantitative contained in an active file or working storage.

Normally, all quantitative fields specified on LINE statements are totaled. The SUM

overrides the automatic summing by forcing fields specified on a SUM statement

to be totaled only.

Note: The quantitative fields are all numeric fields defined with decimal places.

One can force fields that do not have any decimal places to be treated as

quantitative fields by coding zero for the number of decimals in the field

definition.

SEQUENCE statement

92 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

HEADING statement

The HEADING statement optionally defines an alternate heading for a print field.

The HEADING statement must be coded following the REPORT statement but

before the LINE statements of a report definition. Thus, the HEADING overrides

the original heading coded for field definition.

��

HEADING

&FIELD

�

(

’

&LIT

’

)

��

Parameter

FIELD Field name for which the heading is to be used

&LIT A heading literal. Can be up to 128 characters long. Migration

Utility allows literals up to 58 characters long. Literals are stacked

vertically over the print field or column.

Example

Here are various report headings:

 FILE FILEIN1 (80) |

 CUST-NAME 01 15 A HEADING (’NAME’) |

 CUST-ADDRESS1 16 15 A HEADING (’ADDRESS1’) | Library Section

 CUST-ADDRESS2 32 15 A HEADING (’ADDRESS2’) |

 CUST-ADDRESS3 48 15 A HEADING (’ADDRESS3’) |

 JOB INPUT FILEIN1

 PRINT REPORT1 |

 |

 REPORT REPORT1 LINESIZE 080 |

 HEADING CUST-NAME (’CUSTOMER’ ’NAME’) |

 HEADING CUST-ADDRESS2 (’CUST’ ’ADDRESS’ ’TWO’) |

 TITLE 01 ’NAME-ADDRESS REPORT EXAMPLE’ | Activity Section

 LINE 01 CUST-NAME + |

 CUST-ADDRESS1 + |

 CUST-ADDRESS2 + |

 CUST-ADDRESS3 |

The program produces the following report (where Xs represent real data):

 05/30/95 NAME-ADDRESS REPORT EXAMPLE PAGE 1

 CUSTOMER CUST

 NAME ADDRESS1 ADDRESS ADDRESS3

 TWO

 XXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

 XXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXX

TITLE statement

The TITLE statement defines report titles (lines printed on the top of each page).

One or more TITLE statements can be specified. Each TITLE statement defines a

single title line. The TITLE statements must be placed following the REPORT and

CONTROL statement and before the first LINE statement.

SEQUENCE statement

Chapter 5. Program instruction reference 93

�� TITLE

&NUMBER
 &FIELD

&LITERAL

+

OFFSET

-

COL

&COLUMN
 ��

Parameters

&NUMBER Title sequence number. Specifies the position of the title in the title

area. Valid numbers are 1 to 99. The numbers must be in ascending

sequence. The first title number must be 1 or unspecified.

Note: Migration Utility ignores the sequence numbers.

&FIELD A field name to be printed on the title

&LITERAL A character string (literal). An alphanumeric literal must be

enclosed in quotation marks.

OFFSET The space adjustment parameters modify the normal spacing

between title items. + or - indicates the direction in which the

SPACE statement is applied.

&COLUMN The print column number where the next title item is to be placed.

The number can be 1 to nn, but it cannot force the next title

beyond the end of the title LINESIZE.

The system date and the current page number are automatically inserted on the

first TITLE line. You can inhibit the date and page printing by coding NODATE

and NOPAGE options on the REPORT statement.

Each TITLE line is centered within the title area of the report by default. You can

inhibit centering by specifying NOADJUST on the REPORT statement.

LINE statement

The LINE statement defines report detail lines. One or more LINE statements can

be specified. Each LINE statement defines a single report line. The LINE

statements must be placed following the TITLE statements.

�� LINE

&NUMBER
 &FIELD

&LITERAL

+

OFFSET

-

COL

&COLUMN
 �

�
POS

&POSITION
 ��

Parameters

&NUMBER Line sequence number. Specifies the position of the line in the line

group. Valid numbers are 1 to 99. The numbers must be in

ascending sequence. The first line number must be 1 or

unspecified.

Note: Migration Utility ignores the sequence numbers.

&FIELD A field name to be printed on the line

SEQUENCE statement

94 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

&LITERAL A character string (literal). An alphanumeric literal must be

enclosed in quotation marks.

OFFSET The space adjustment parameters modify the normal spacing

between line items. + or - indicates the direction in which the

SPACE statement is applied.

&COLUMN The print column number where the next line item is to be placed.

The number can be 1 to nn, but it cannot force the next line

beyond the end of the line LINESIZE.

&POSITION The position of line items on line 2 through 99 in respect to the

items on line 1. The position corresponds to the line item number

of line 1 under which the line item is placed. In simple terms, this

parameter allows one to align items of line 2 through line 99 with

items on line 1.

Any quantitative fields listed on the LINE statements are automatically totaled on

each summary line for reports that contain CONTROL statements (control breaks).

The automatic totaling can be overridden by coding the SUM statement of the

REPORT definition.

Report exits

Migration Utility supports Easytrieve report exits as described in this section.

Report exits are always placed after the REPORT statement (the last LINE

statement). Each exit is declared in a form of a PROC and terminated by a

PROC-END scope terminator.

Exits are recognized by their standard PROC name as follows:

REPORT-INPUT. PROC

Report input exit. This procedure is entered before entering report logic. It

can be used to massage the input data before it is acquired by the print

logic.

BEFORE-LINE. PROC

Before LINE printing exit. This exit is entered before each line is printed. It

enables the user to print a literal string before the detail line. The content

of the print fields cannot be changed.

AFTER-LINE. PROC

After line exit. This exit is entered after printing of each LINE. It is

typically used to print a literal string after a detail line on a report.

BEFORE-BREAK. PROC

Before Break exit. This exit is entered before control break occurs. It can be

used to calculate percentages and average totals that must be calculated

immediately before printing. The exit is entered for each control break

specified by the CONTROL statement.

 The value of the LEVEL system variable can be used to determine which

control break is being processed. The value of 1 indicates the most minor

break, 2 the one before it, and so on. The FINAL break contains the value

of N+1, where N is the number of fields specified on the CONTROL

statement.

 TALLY system variable contains the number of records in a particular

control group.

SEQUENCE statement

Chapter 5. Program instruction reference 95

BREAK-LEVEL system variable contains the field name that caused the

break.

Note: If NOPRINT is specified on a CONTROL statement, the

BEFORE-BREAK exit is still invoked.

AFTER-BREAK. PROC

After break exit. This exit is entered after printing of the last total line of

each control break. It can be used to produce special annotations on control

breaks. The exit is entered for each control break specified by the

CONTROL statement.

 The value of the LEVEL system variable can be used to determine which

control break is being processed. The value of 1 indicates the most minor

break, 2 the one before it, and so on. The FINAL break contains the value

of N+1, where N is the number of fields specified on the CONTROL

statement.

 TALLY system variable contains the number of records in a particular

control group.

 BREAK-LEVEL system variable contains the field name that caused the

break.

Note: If NOPRINT is specified on a CONTROL statement, the

BEFORE-BREAK exit is still invoked.

ENDPAGE. PROC

End of Page exit. This exit is entered when end of page is reached. It can

be used to print page foot information such as special annotations or totals.

 Easytrieve allows the ENDPAGE exit for all types of reports. However,

Migration Utility allows the ENDPAGE exit for all types of reports, except

when printing LABELS. This may require you to relocate the ENDPAGE

logic to the AFTER-BREAK exit.

TERMINATION. PROC

Termination exit. This exit is entered at the end of the report. This exit can

be used to print report footing, including control totals and distribution

information.

Each exit must be terminated by an END-PROC scope terminator. The exits are

optional, thus, only those exits that are needed are coded.

Any quantitative fields referenced in the BEFORE-BREAK and AFTER-BREAK

exits contain the total value accumulated for the specific break level. These values

can be used in calculations but cannot be altered. The rules vary with each

Easytrieve version, therefore pay extra attention to the final outcome. Migration

Utility lets you use total values but it does not alter their contents.

Native COBOL support

Migration Utility (Translator) allows the programmer to embed COBOL code in the

Easytrieve Plus program between %COBOL and %END macros (statements).

All code is punched out unchanged. Procedure statements are placed in the

PROCEDURE DIVISION, and Working Storage fields in the WORKING-STORAGE

SECTION.

SEQUENCE statement

96 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

In addition, the following COBOL instructions are supported in native Easytrieve

Plus syntax:

v STRING (fully supported except for ON OVERFLOW option)

v INITIALIZE

v INSPECT (see also “INSPECT VREPLACING statement” on page 100

You can code any of the above COBOL instructions in a program just as you

would for any other Easytrieve Plus instruction. The %COBOL is not needed and

the restrictions described below do not apply. Refer to COBOL II or a later version

of the COBOL Reference manual for the coding rules. Other COBOL instructions

can be coded according to the %COBOL rules below.

Examples:

STRING FIELDA ’,’ FIELDB INTO FIELDC

STRINGC-POINTER = 1

STRING FIELDA DELIMITED BY SIZE +

 ’,’ DELIMITED BY SIZE +

 FIELDB DELIMITED BY SIZE +

 INTO FIELDC WITH POINTER STRINGC-POINTER

INITIALIZE FILEIN1

INSPECT FILEIN1 REPLACING ALL ’*’ BY SPACES

INSPECT FILEIN1 REPLACING ALL ’*’ BY SPACES BEFORE INITIAL ’?’

INSPECT FILEIN1 REPLACING ALL ’*’ BY SPACES AFTER INITIAL ’A’

INSPECT FIELDC CONVERTING ’4’ TO ’X’

INSPECT FIELDC CONVERTING ’4’ TO ’X’ AFTER INITIAL ’A’

WCOUNT = 0

INSPECT FIELDC TALLYING WCOUNT FOR CHARACTERS

WCOUNT = 0

INSPECT FIELDC TALLYING WCOUNT FOR CHARACTERS BEFORE ’A’

WCOUNT = 0

INSPECT FIELDC TALLYING WCOUNT FOR ALL ’AA’ BEFORE ’A’

WCOUNT = 0

INSPECT FIELDC TALLYING WCOUNT FOR LEADING SPACES BEFORE ’A’

Benefits

COBOL provides for programming instructions not supported by Easytrieve Plus,

such as STRING and UNSTRING. In addition, PEngiBAT Functions and Macros

can be used where appropriate for optimum productivity.

%COBOL facility should be used by those users who use Migration Utility as a

Reports Generator, or to combat unsupported Easytrieve statements when

translating Easytrieve Plus programs (such as IMS and IDMS).

Restrictions

COBOL support should be used with caution when referencing Easytrieve Plus

field names (those fields defined using the Easytrieve Plus syntax). This is because

Native COBOL support

Chapter 5. Program instruction reference 97

Migration Utility sometimes changes the field names to comply with COBOL rules,

but COBOL code is passed on unchanged, thus causing or creating undefined field

names.

The best way to combat this situation is to define working storage fields needed

for COBOL logic using COBOL syntax. Information can be moved into COBOL

defined fields from Easytrieve Defined fields at the beginning of the routine, and

from COBOL defined fields into Easytrieve Defined fields before exiting.

Coding conventions

%COBOL &syntax

 .

 .

 .

%END

Where:

v &syntax FULL = COBOL code is according to Standard COBOL rules:

– Area A starts in position 8

– Area B starts in position 12

– Comments are all lines that contain a ″*″ in position 7
v NONE = COBOL Code is according the following rules:

– Area A starts in position 2

– Area B starts in position 6

– Comments are all lines that contain a “#” in position 1
v All statements are transformed by Migration Utility to comply with Standard

COBOL rules. Data on each line must be limited to 64 characters to prevent

spanning beyond CC 72.

v The default is NONE

Example

This example shows the use of %COBOL without COBOL syntax rules.

FILE FILEIN1

INPUT-TEXT 1 80 A

%COBOL

 WORKING-STORAGE SECTION.

#**

THIS IS %COBOL WORK AREA IMBEDDED IN Easytrieve.

*

#**

 01 WORK-AREA.

 02 FIELD-A PIC 9(05).

 02 FILLER PIC X(05).

 02 FIELD-B PIC 9(02).

 01 WORK-AREA2.

 02 RESULT-1 PIC ZZ,ZZZ,ZZZ.99-.

 02 RESULT-2 PIC ZZ,ZZZ,ZZZ.99-.

Native COBOL support

98 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

This example show the use of %COBOL with FULL COBOL syntax rules.

FILE FILEIN1

INPUT-TEXT 1 80 A

%COBOL FULL

 WORKING-STORAGE SECTION.

 * THIS IS %COBOL WORK AREA IMBEDDED IN Easytrieve.

 *

 01 WORK-AREA.

 02 FIELD-A PIC 9(05).

 02 FILLER PIC X(05).

 02 FIELD-B PIC 9(02).

 01 WORK-AREA2.

 02 RESULT-1 PIC ZZ,ZZZ,ZZZ.99-.

 02 RESULT-2 PIC ZZ,ZZZ,ZZZ.99-.

%END

JOB INPUT FILEIN1

DISPLAY INPUT-TEXT

%COBOL FULL

 * THIS IS %COBOL CODE IMBEDDED IN Easytrieve

 *

 PROCEDURE DIVISION.

 MOVE INPUT-TEXT TO WORK-AREA

 COMPUTE RESULT-1 = (FIELD-A ** FIELD-B)

 COMPUTE RESULT-2 = (FIELD-A ** FIELD-B) / 12

 DISPLAY ’RESULT-1: ’ RESULT-1

 DISPLAY ’RESULT-2: ’ RESULT-2

 * THE END OF %COBOL TEST CODE THAT IS IMBEDDED IN Easytrieve *

%END

DISPLAY ’END-OF-JOB’

STOP

%END

JOB INPUT FILEIN1

DISPLAY INPUT-TEXT

%COBOL

#**

THIS IS %COBOL CODE IMBEDDED IN Easytrieve

*

#**

 PROCEDURE DIVISION.

 MOVE INPUT-TEXT TO WORK-AREA

 COMPUTE RESULT-1 = (FIELD-A ** FIELD-B)

 COMPUTE RESULT-2 = (FIELD-A ** FIELD-B) / 12

 DISPLAY ’RESULT-1: ’ RESULT-1

 DISPLAY ’RESULT-2: ’ RESULT-2

THE END OF %COBOL TEST CODE THAT IS IMBEDDED IN Easytrieve

*

%END

DISPLAY ’END-OF-JOB’

STOP

Native COBOL support

Chapter 5. Program instruction reference 99

Support for COBOL and PEngi Functions in ASSIGN

statement

Migration Utility allows for COBOL and PEngi (CCL1) functions in Easytrieve Plus

ASSIGN statements.

To do so, code FUNCTION &FUNAME(&ARG1 &ARG2...) for the second

argument.

COBOL supports numerous functions. For information about COBOL functions,

refer to the COBOL reference manual.

The use of PEngi (CCL1) functions is beyond the scope of this document.

Generating rules

When the target field in the assign is a numeric field, Migration Utility generates a

COBOL COMPUTE statement.

When the target field in the assign is an alphanumeric field, Migration Utility

generates a COBOL MOVE statement.

Example:

WS-RANDOM-NUMBER = FUNCTION RANDOM (SEED)

INSPECT VREPLACING statement

The INSPECT VREPLACING statement replaces one or more specified character

strings in a data string with replacement character strings.

The INSPECT VREPLACING statement:

v Replaces all occurrences of specified characters or character strings in a data

string with specified replacement characters or character strings.

v Deletes all occurrences of specific characters or character strings in a data string.

v Calculates the length of the modified data string and places the length in a

user-specified field (if supplied).

INSPECT VREPLACING is a modified version of the COBOL statement, INSPECT

REPLACING. However, unlike INSPECT REPLACING (which can only be used

when the lengths of the old and new strings are the same), INSPECT

VREPLACING allows you to replace strings of the same or different lengths.

Format 1

��

INSPECT

&DATABUFFER

VREPLACING

�

old/new strings

LENGTH

&STRINGLENGTH

��

old/new strings:

 &OLDSTRING BY &NEWSTRING

IGNORE

PADCHAR

&PADCHAR

IGNORE

PADCHAR

&PADCHAR

Support for COBOL and PEngi Functions in ASSIGN statement

100 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Parameters

&DATABUFFER

A buffer that initially holds the data string to be inspected and which, after

replacement, holds the new string with the replaced items.

 &DATABUFFER must be defined in working storage as an alphanumeric

data item, large enough to hold the resulting changed string. The

maximum buffer length is 32,767.

 To determine the length of the string to be searched, Migration Utility uses

either the length you supply (&STRING-LENGTH) or, if not supplied, the

length of &DATABUFFER.

&OLDSTRING

The data string to be replaced. Must be a display numeric or an

alphanumeric field, or a literal. The maximum field length is 256 bytes. The

maximum literal length is 160 characters.

&NEWSTRING

The data string that is to replace &OLDSTRING. Must be a display

numeric or an alphanumeric field, or a literal. The maximum field length is

256 bytes. The maximum literal length is 160 characters.

&PADCHAR

The pad character used to pad the trailing part of the field.

 If specified for &OLDSTRING, the length used in the comparison excludes

these trailing pad characters; otherwise, Migration Utility use the length of

&OLDSTRING in the comparison.

 If specified for &NEWSTRING, the length used in the replacement excludes

these trailing pad characters; otherwise, Migration Utility use the length of

&NEWSTRING in the replacement.

&STRINGLENGTH

A binary, display, or packed-decimal field initially containing the length of

the string (in &DATABUFFER) to be inspected.

 After replacement, Migration Utility sets &STRINGLENGTH (if supplied) to

the length of the new string.

 Replacement rules:

v The replacement process uses two internal work buffers, one to hold the input

data string, the other to hold the modified output data string.

v The contents of &DATABUFFER are moved to the internal input buffer.

v The contents of the internal input buffer are inspected (by indexing through the

buffer) for a match with the contents of &OLDSTRING.

The length used in the comparison is the derived length of &OLDSTRING.

v If a match with &OLDSTRING is found in the internal input buffer, that section

of the input data string is replaced by the contents of &NEWSTRING and the

result placed in the internal output buffer.

The length used in the replacement is the derived length of &NEWSTRING. If

the derived length of &NEWSTRING is zero, the matched section of the input

data string is deleted in the internal output buffer.

The index for the internal input buffer is incremented by the length of

&OLDSTRING.

The index for the internal output buffer is incremented by the length of

&NEWSTRING.

INSPECT VREPLACING statement

Chapter 5. Program instruction reference 101

v If no match is found with &OLDSTRING in the internal input buffer, one

character is moved from the internal input buffer to the internal output buffer

unchanged.

The index for the internal input buffer is incremented by 1.

The index for the internal output buffer is incremented by 1.

v The contents of the internal input buffer are again inspected for a match with

the contents of &OLDSTRING and the above process repeated until the end of

the internal input buffer is reached.

v The process is repeated for each pair of replacement strings specified.

v On completion, the contents of the internal output buffer are moved to

&DATABUFFER, and &STRINGLENGTH (if specified) is set to the length of the

updated string in &DATABUFFER.

v If the length of the updated string exceeds:

– the length of &DATABUFFER, or

– 32,767 characters

the updated string is truncated.

If &STRINGLENGTH is greater than the length of &DATABUFFER, overflow has

occurred.

Example 1:

(Assume that the fields prefixed by “I” are in a record named HTMLIN.)

 WBUFFER W 252 A

 VAR0 W 10 A VALUE ’::INSERT::’

 NUL0 W 1 A VALUE X’00’

 VAR1 W 10 A VALUE ’@C.’

 VAR2 W 10 A VALUE ’@B.’

 VAR3 W 10 A VALUE ’@W.’

 VAR4 W 10 A VALUE ’@R.’

 VAR5 W 10 A VALUE ’@A.’

 COMPANY W 10 A

 BRANCH W 10 A

 WAGE W 10 A

 RATE W 10 A

 BONUS W 15 A

 BONUS1 W 5 P 2

 WLENGTH W 2 B

 MOVE ICOMPANY TO COMPANY

 MOVE IBRANCH TO BRANCH

 MOVE IWAGE TO WAGE MASK ’ZZZ,ZZZ.99’

 MOVE IRATE TO RATE MASK ’ZZ.999’

 BONUS1 = IWAGE * (IRATE / 100)

 MOVE BONUS1 TO BONUS MASK ’ZZZ,ZZZ.99’

 MOVE HTMLIN TO WBUFFER MASK ’X(80)’ LENGTH WLENGTH

WLENGTH now contains the length of the input data.

 INSPECT WBUFFER VREPLACING +

 VAR0 PADCHAR SPACE BY NUL0 PADCHAR X’00’ +

 VAR1 PADCHAR SPACE BY COMPANY PADCHAR SPACE +

 VAR2 PADCHAR SPACE BY BRANCH PADCHAR SPACE +

 VAR3 PADCHAR SPACE BY WAGE PADCHAR SPACE +

 VAR4 PADCHAR SPACE BY RATE PADCHAR SPACE +

 VAR5 PADCHAR SPACE BY BONUS PADCHAR SPACE +

 LENGTH WLENGTH

INSPECT VREPLACING statement

102 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

WLENGTH now contains the length of the replaced data, and WBUFFER contains

the new string.

Example 2:

If the field lengths for VAR0...VAR5 in Example 1 were defined with exact VALUE

length, you could write the INSPECT VREPLACING statement as:

 INSPECT WBUFFER VREPLACING +

 VAR0 BY NUL0 PADCHAR X’00’ +

 VAR1 BY COMPANY PADCHAR SPACE +

 VAR2 BY BRANCH PADCHAR SPACE +

 VAR3 BY WAGE PADCHAR SPACE +

 VAR4 BY RATE PADCHAR SPACE +

 VAR5 BY BONUS PADCHAR SPACE +

 LENGTH WLENGTH

Example 3:

If the field lengths for all the fields in Example 1 were defined with exact VALUE

length, you could write the INSPECT VREPLACING statement as:

 INSPECT WBUFFER VREPLACING +

 VAR0 BY NUL0 PADCHAR X’00’ +

 VAR1 BY COMPANY +

 VAR2 BY BRANCH +

 VAR3 BY WAGE +

 VAR4 BY RATE +

 VAR5 BY BONUS +

 LENGTH WLENGTH

Note that the pad character for the NUL0 field was retained to remove “::INSERT:”

(the value in the VAR0) from the buffer.

Easytrieve macros

The Easytrieve macros allow the user to have record definitions and more

frequently used Easytrieve routines defined externally of the program.

Macros are traditionally kept in a separate PDS or Librarian library.

Migration Utility fully supports all Easytrieve Macro Language conventions.

Macros allow symbolic replacement of the symbols embedded in the macro source.

Thus, macros can be created for frequently used program routines with the ability

to mold the code by the external parameters coded in the program. This saves you

creating new routines, and provides you with reliable, already tested, routines.

All Easytrieve macros must start with a MACRO statement and terminate with an

MEND statement. User coded statements are placed between the MACRO and the

MEND statement.

The macro name is the name of the Partitioned Data Set (PDS) member you create.

INSPECT VREPLACING statement

Chapter 5. Program instruction reference 103

��

MACRO

&POSCOUNT

�

&POSPARM

�

&KEYWORD

&VALUE

MEND

��

Parameters

&POSCOUNT

The number of positional parameters on the prototype statement. If the

macro contains only keyword parameters, you must code ZERO. The

maximum number of positional parameters allowed by Migration Utility is

1024.

&POSPARM

Positional parameter identifier. The number of parameter identifiers must

match the number specified by the &POSCOUNT.

&KEYWORD

A keyword name to be used as a symbol in the replacement scheme.

&VALUE

Default value associated with the keyword.

MEND

The terminating keyword of the macro.

One or more keywords with associated values can be specified. Values with

embedded blanks must be enclosed in quotation marks.

User supplied statements are coded between the MACRO prototype and the

MEND statements. The embedded statements can include symbolic parameters

(positional or keyword) as declared on the prototype. Each keyword is preceded by

& (see the example).

Example

This example macro is the “MSTFILE” macro for defining Master File layout:

 MACRO 2 FILE SIZE ORG KSDS PREFIX I

 FILE &FILE &ORG (&SIZE)

 &PREFIX-ACCOUNT 1 10 A

 &PREFIX-NAME 11 15 A

 &PREFIX-ADDRESS1 27 30 A

 &PREFIX-ADDRESS2 58 30 A

 MEND

In the example, there are two positional parameters, FILE and SIZE, and two

keyword parameters ORG and PREFIX. The keyword parameter ORG defaults to

the value KSDS and the keyword parameter PREFIX defaults to the value I.

Notice the symbolic parameters embedded in the FILE and the record definitions.

Each positional and keyword identifier is preceded by a “&”.

Easytrieve macros

104 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Invoking macros

Macros are embedded in the Easytrieve source by prefixing the macro name by a

“%”.

Macro parameters are coded following the macro name.

Positional parameters are coded first (if any). The number of positional parameters

must always match the number of positional parameters declared in the macro

prototype.

Keyword parameters are optional, but if coded, they must be coded following the

positional parameters. A value must be coded for each keyword parameter.

Any keyword parameters not supplied, when invoking macros, assume their

default values as declared in the macro prototype.

When macro parameters span over multiple lines, each line must end with a ″+″ or

a ″-″ as per Easytrieve punctuation rules.

Example

This example uses the MSTFILE macro above to define two master files:

 %MSTFILE FILEIN 130 ORG KSDS PREFIX I1 |

 | Valid

 |

 %MSTFILE FILEIN2 130 ORG KSDS PREFIX I2 |

 | MSTFILE

 |

 %MSTFILE FILEIN3 130 PREFIX I3 | Macro Invocations

Easytrieve macros

Chapter 5. Program instruction reference 105

Easytrieve macros

106 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Chapter 6. SQL/DB2 support

Easytrieve Plus supports two methods for accessing database:

v Using native SQL statements to manage cursors

v Using Easytrieve method to automatically manage cursors

Migration Utility supports both methods as described in this section.

Translating concepts

The FSYTPA00 program runs the SQL translator step when SSID or BIND

parameters are coded on the PARM statement of an Easytrieve Plus program.

There are two translators that it chooses from:

v When BIND (STATIC) or BIND(STATIC-ONLY) is coded, the standard DB2/SQL

translator supplied with DB2 system is run. The supplied JCMUSQLJ and

JCMUSQLP PROCs, located in the SYS1.SFSYJCLS, can be tailored and used to

translate and bind DB2 programs that will be running with imbedded static SQL

statements.

v When BIND(DYNAMIC) is coded, the Dynamic SQL translator supplied with

the Migration Utility system is run. For details, see “Running SQL programs in

Dynamic mode” on page 110.

DB2/SQL column definitions can be automatically accessed from the

SYSIBM.SYSCOLUMNS catalog. Refer to “Activating Call Attachment Facility

(CAF) for DB2 users” on page 188.

If CAF is not available, then a DCLINCL must be supplied for each accessed table.

The DECLGENs are included via the ″SQL DCLINCL &NAME″ Migration Utility

statement. One statement is required for each SQL/DB2 table in use. These

statements must be placed before SQL file definitions (preferably before the first

valid Easytrieve Definition in the program but after the leading comments).

Note: The DECLGENs can also be included via the ″EASYTRAN:″ comment in

your program to preserve Easytrieve Syntax compatibility. In this way, the

same Easytrieve Source can be used as input to Easytrieve Plus and

Migration Utility. Refer to the ″EASYTRAN:″ coding rules in this document.

Migration Utility generates an SQL INCLUDE or partial Column Definitions in the

generated COBOL for each included DECLGEN in Easytrieve Plus Source. For

details refer to the DECLGEN=FULL/PART and SQLPFIX=EZPARAMS option.

Example: DECLGEN of a DB2 table

This example shows a real DECLGEN of a DB2 table. COBOL users typically have

similar DECLGENs available for use by COBOL programmers. Oracle or other

Database users should create a similar DECLGEN for each table to make

translating possible.

© Copyright IBM Corp. 2002, 2005 107

|
|
|

|
|
|
|
|

|
|
|

Notes:

1. COBOL 01 level field name must match the table name it represents. Since the

table names are typically coded with an underscore, the underscores should be

changed to dashes to preserve COBOL field naming conventions.

2. Migration Utility generates the COBOL field names with the prefix specified by

the SQLPFIX= option. A different sequence number is attached to each new

table to preserve uniqueness. Thus if SQLPFIX=(Q-) is specified, the prefix

attached to the field names would be Q1-, Q2-, and so on. It is important to

recognize that the field names for holding table column information are hard

generated in the COBOL code. The field names located in the original

DECLGENs are not referenced in the generated code.

3. Table names in Easytrieve programs can be coded as &owner.&table. Migration

Utility searches DECLGENs for a table name coded in the Easytrieve program

with the qualified &owner.&table first. If not found, then the search is

conducted without the &owner qualifier. Your DECLGEN table name can be

qualified or unqualified. To ensure a smooth translation, code table names in

the DECLGEN without a qualifier, unless you need a specific owner in which

case the &owner must also be coded in your Easytrieve program.

 **

 * DCLGEN TABLE(CUST_TB)

 *

 * LIBARARY(SYS1.SFSYEZTS(DECLADDR)

 *

 * ACTION(REPLACE)

 *

 **

 EXEC SQL DECLARE CUST_TB TABLE

 (CUST_CO_NBR DECIMAL(5, 0) NOT

 NULL,

 CUST_ID CHAR(9) NOT NULL,

 CUST_NUMBER SMALLINT NOT NULL,

 CUST_ACCOUNT DECIMAL(5, 0) NOT

 NULL,

 CUST_PRODUCT CHAR(3) NOT NULL,

 CUST_METHOD CHAR(23) NOT NULL,

 CUST-RELATION CHAR(3) NOT NULL,

 CUST_PRIM_IND CHAR(1) NOT NULL,

) END-EXEC.

 **

 * COBOL DECLARATION FOR CUST_TB.

 *

 **

 01 CUST-TB.

 10 CUST-CO-NBR PIC S9(5)V COMP-3.

 10 CUST-ID PIC X(09).

 10 CUST-NUMBER PIC S9(04) COMP.

 10 CUST-ACCOUNT PIC S9(5)V COMP-3.

 10 CUST-PRODUCT PIC X(03).

 10 CUST-METHOD PIC X(23).

 10 CUST-RELATION PIC X(03).

 10 CUST-PRIM-IND PIC X(01).

 **

 * THE NUMBER OF COLUMNS DESCRIBED BY THIS DECLARATION IS 8. *

 **

Translating concepts

108 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Native SQL statements

With minor adjustments to the Host Variables names, Migration Utility interprets

native SQL statements exactly as written in the Easytrieve Program. The Host

Variable names are adjusted to reflect the changes that take place during the

translating process.

As per Easytrieve Plus rules, Migration Utility treats all Easytrieve statements that

start with SQL keyword as the Native SQL statements. Using these Native SQL

statements, the programmer can code fully SQL-compliant programs and have

complete SQL cursor control.

Automatic cursor management

Easytrieve Plus can manage the SQL cursor in two ways:

v Easytrieve files defined as SQL files

v Automatic retrieval without a file

Migration Utility supports both methods as per Easytrieve Plus rules described in

the paragraphs that follow.

Easytrieve file defined as an SQL file

SQL Files can be accessed:

v Via JOB INPUT &FILE for Automatic Input. In this case, a new row is

automatically fetched or retrieved from the table into the file’s data area. The

method is ideal for users that do not have advanced knowledge of SQL, that is,

users do not have any Cursor control.

v Via SQL-like I/O statements. The following I/O statements are available:

– CLOSE

– DELETE

– FETCH

– INSERT

– SELECT

– UPDATE

Automatic retrieval without a file

In this case, SQL must be coded on the JOB statement in place of a file name. A

SELECT statement must be coded immediately after the JOB statement to specify

the columns to be retrieved and the Host Variables to receive the data. Each time

the JOB Activity is iterated, another row of data is fetched or retrieved.

Automatic retrieval functions in read-only mode.

SQL statements syntax rules

The following syntax must be observed when coding SQL statements in Easytrieve

Programs:

v Operators must be separated by blanks.

v Standard Easytrieve Plus continuation conventions must be followed.

v Commas are considered when parsing and are not ignored.

v The period is used for qualifiers not to signify end-of-statement.

v The colon (:) identifies host variables, and is not a qualification separator

Native SQL statements

Chapter 6. SQL/DB2 support 109

v SQL statement cannot be followed by another statement on the same line.

PARM statement parameters

The following Easytrieve Plus PARM statements set the SQL environment for the

program:

For DB2:

 BIND (STATIC/STATIC-ONLY/DYNAMIC)

 SQLID (&OWNER)

 SSID (&SSID)

 PLAN (&PLAN)

 LINK (&PROGRAM R)

 QUAL (&QUAL)

For SQL/DS™:

 USERID (&USERID)

 PREPNAME (&PREPNAME)

The QUAL Migration Utility PARM statement supplements the generation of the

BIND parameters. It provides a way of supplying a value for the DB2 BIND

QUALIFIER. The QUAL parameter can be coded with the existing PARM

parameters. For example:

PARM QUAL(’SYS2’) SSID (’TESTDB2’) PLAN(’TESTDB2P’) LINK(’TESTPROG’)

Running SQL programs in STATIC mode

Migration Utility generates COBOL programs with imbedded SQL statements. To

run in STATIC mode, the generated programs must be translated with the DB2

translator and bound to DB2 system before use.

To translate and bind DB2 programs, use the supplied JCMUSQLJ and JCMUSQLP

PROCS in SYS1.SFSYJCLS library as templates. The BIND parameters are

generated as described below.

 The PARM statement information is extracted by Migration Utility and BIND

parameters are generated for potential BIND. The BIND file is used as an input to

the BIND step, or you can tailor it for a custom use in a separate BIND job. In

addition, the SQLBIND macro, located in the SYS1.SFSYCCLM PDS, can be

changed to generate hard-coded parameters as needed. Parameters are interpreted

as follows (you can view SQLBIND macro source):

&SYSTEM = SSID from the Easytrieve PARM statement

&PLAN = PLAN from the Easytrieve PARM statement

&OWNER = SQLID from the Easytrieve PARM statement

&QUAL = QUAL from the Easytrieve PARM statement

&MEMBER = LINK from the Easytrieve PARM statement

&SQLMODE = SQLMODE Option from EASYPARM/EASYTRAN

 BIND = Do not use CAF to connect to DB2

 &PGMNAME = Program to use for connecting to DB2 via CAF

Running SQL programs in Dynamic mode

Normally, COBOL programs with imbedded SQL statements must be translated

with an SQL translator and bound to DB2 before they can be run. This results in

additional system overhead and unnecessary complications associated with

binding.

SQL statements syntax rules

110 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

|
|
|
|
|
|

|
|

|

|
|
|

|
|
|

|

|
|
|
|

Migration Utility provides a Dynamic SQL interface that allows users to run the

DB2 application programs without doing the BIND step. This eliminates problems

associated with the BIND access authority and system contention.

General concepts

The FSYSQLIO module, supplied with Migration Utility, performs DB2 calls on

behalf of application programs. FSYSQLIO runs in CAF (Call Attachment Interface)

mode.

v FSYSQLIO is prepared and bound at installation time with a collection name.

v COBOL programs that contain imbedded SQL statements are run through

Migration Utility’s Dynamic SQL translator instead of the standard DB2 SQL

translator.

Migration Utility’s translator converts imbedded static SQL statements to

interface with the FSYSQLIO module. The interface is by means of a standard

COBOL CALL statement.

v The resulting COBOL program is compiled and linked, or executed as link an

go, as a standard COBOL program.

Migration Utility’s standard run-time load library (SYS1.SFSYLOAD) is required

at run time.

How does it work in a Migration Utility environment?

Migration Utility uses four parameters from the PARM statement coded in the

Easytrieve Plus program to determine DB2 resources to be used at application run

time:

v SSID (&ssid)

v PLAN (&plan)

v SQLID(&sqlid)

v BIND(&option)

Example:

PARM SSID(DBVA) PLAN(IBMMIGUT) SQLID(GLAPPL02) BIND(DYNAMIC)

Parameters not coded on the PARM statement default as follows:

v EZPARAMS file defines the default values for the SQLBIND and SQLSSID

parameters.

v The defaults can be overridden by the PARM parameters placed in the

Easytrieve Plus program. The BIND overrides the SQLBIND and SSID overrides

the SQLSSID.

v There is no default for SQLID. If SQLID is not provided on the PARM statement

in the Easytrieve Plus program, the TSO user that submits the application job is

assumed by DB2. Note that SQLID can be controlled by imbedding an SQL SET

CURRENT SQLID = ’&SQLID’ statement in the Easytrieve Plus source.

v SQLPARMS file defines the default values for the Dynamic SQL translator step.

SQLPARMS is located in SYS1.SFSYEZTS.

v The one-step driver program (FSYTPA00) determines the mode of operation

based on information supplied in the first two items above, and executes the

DYNTRAN step located in the #EZTPROC. After successful translation, COBOL

and LKED, or LKGO steps are executed as found in the #EZTPROC. The BIND

is not required.

Available options supplied by EASYTRAN/EZPARAMS

SQLBIND=mode

Establishes the default application run-time mode, where mode can be:

Running SQL programs in Dynamic mode

Chapter 6. SQL/DB2 support 111

|
|
|

|
|
|
|

|

|
|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|

|

|

|

|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|

|

|
|

STATIC Runs in static mode. Option cannot be overridden by

PARM BIND (&option) in Easytrieve Plus source.

DYNAMIC To run in dynamic mode. Option cannot be overridden by

PARM BIND (&option) in Easytrieve Plus source.

ANY BIND is supplied in Easytrieve Plus source. Run mode

must be as supplied by PARM BIND (&option) in

Easytrieve Plus source.

SQLSSID=(&SYS)

establishes the default DB2 system ID if one is not supplied by means of

the PARM SSID in the Easytrieve Plus source where &SYS is the DB2

system to run with.

SQLMODE=FSYDB250

The FSYDB250 program has been changed to receive the SSID, PLAN and

SQLID name from the application program if SQLDD is not supplied in

the JCL. It employs the following logic:

v If SQLDD is supplied in the JCL, it extracts the SSID, PLAN and SQLID

from the SQLDD file. Note that all parameters are optional.

v If PLAN is not supplied in the SQLDD file, FSYDB250 uses the plan

name coded on the PARM PLAN (&plan) in the Easytrieve Plus source.

v If SSID is not supplied in the SQLDD file and SSID is coded in the

Easytrieve Plus program, the supplied SSID from the program is used,

otherwise FSYDB250 retrieves the SSID from the system module

DSNHDECP (DSNEXIT or DSNLOAD load libraries).

v If SQLID is not supplied in the SQLDD file and SQLID is coded in the

Easytrieve Plus program, the supplied SQLID from the program is used.

Translating DB2/SQL programs to run in Dynamic SQL mode

You can choose from any supplied JCMUCLG* or JCMUCL* jobs located in the

SYS1.SFSYJCLS library. You must add DSNEXIT and DSNLOAD DB2 libraries to

the JOBLIB or STEPLIB. Everything else remains as if you were running a non-DB2

program.

You can run programs as link and go, or you can choose to create a load module

and execute it later. The load module is executed by name, like any non-DB2

program. The SYS1.SFSYLOAD Migration Utility run-time library is needed at run

time.

Dynamic SQL translator and run-time errors

The translator errors are reported to SYSTERM DDname.

The translator generated program listing is printed to SYSTLIST.

Application run-time errors are printed to SYSOUT. Errors are reported by means

of the standard IBM DB2 error-handler DSNTIAR module.

Library Section for SQL processing

Before the SQL data can be accessed, you must define the fields to hold the

columns to be retrieved from the database. These fields are referred to as the Host

Variables.

For native SQL statements and Automatic Retrieval without a file, these fields are

typically defined as Working Storage fields.

Available options supplied by EASYTRAN/EZPARAMS

112 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

||
|

||
|

||
|
|

|
|
|
|

|
|
|
|

|
|

|
|

|
|
|
|

|
|

|
|
|
|
|

|
|
|
|

|
|

|

|
|

For SQL Files, fields are defined within the file (as if it were a regular file). The

fields defined within the file correspond to the selected columns of the SQL table.

The table columns are retrieved into the file fields.

SQL catalog INCLUDE facility

The SQL INCLUDE FROM &owner.&table statement names the SQL table or view

from which column names and data types are to be included, and it defines the

location at which the fields are to be generated.

The SQL INCLUDE statement must be coded in the Library Section of your

Easytrieve Plus program and precede any other statements that access the included

table, but must be coded after the SQL DCLINCL &NAME statement, if DCLINCL

is provided.

Migration Utility uses the SYSIBM.SYSCOLUMNS catalog when it encounters an

“SQL INCLUDE FROM &owner.&table” in the Easytrieve Plus program, and a

DCLINCL was not previously supplied. Refer to “Activating Call Attachment

Facility (CAF) for DB2 users” on page 188.

If the &owner.&table exists in the catalog, column definitions are obtained from the

catalog, and the field names are generated from the column names.

If the &owner.&table does not exist in the catalog, a DCLINCL must be supplied

for the table. The field names are obtained from the COBOL definitions in the

DECLGENs.

When to use SQL INCLUDE

SQL include is used to automatically define the necessary host variables into which

DB2/SQL table information is fetched. SQL INCLUDE is not needed in every

Easytrieve program that uses DB2. An alternative is to select/fetch column

information into manually-defined working storage fields.

Processing nullable fields

Easytrieve supports the SQL nullable columns. Easytrieve determines if a column

or field is nullable from the information extracted from the SQL catalog.

Migration Utility determines if a field is a nullable field from the DECLGEN.

When a column is declared as nullable, and NULLABLE is specified in SQL

INCLUDE definition of an SQL File, a 2-byte null indicator (2 B 0) is automatically

generated by Easytrieve and placed before the field name. Each retrieval places a

negative value into the null flag for empty fields (fields that have no value

assigned).

After the retrieval, you can use special processing statements:

IF NULL to determine if column/field contains a null value. MOVE NULL to set a

column/field to a null value.

When using Native SQL or automatic input without a file, null indicator can be

defined as 2-byte signed binary field in working storage (2 B 0). This indicator is

then used in the INTO clause in the native or automatic SELECT statement.

Library Section for SQL processing

Chapter 6. SQL/DB2 support 113

SQL data types

Migration Utility accepts SQL data types as defined by the COBOL definitions in

the included DECLGEN. Data Types are not checked for proper SQL syntax.

However, the SQL preprocessor does so.

SQL syntax checking

For Native SQL statements, Migration Utility does minimal syntax checking. With

the exception of host variables, statements are passed to the SQL preprocessor as

coded. Host variables are potentially renamed and adjusted to avoid unresolved

references.

For Easytrieve SQL look-alike I/O statements, Migration Utility generates standard

SQL for DB2.

System-defined fields

RECORD-COUNT

Reflects the number of rows returned (fetched or by automatic means)

RECORD-LENGTH

The sum of lengths of all fields within a file.

EOF processing

When the end of table is reached, either with automatic (JOB) or Fetch processing,

the file is marked EOF (end of file). In automatic processing, execution stops and

FINISH procedure (if present) is executed. In controlled processing you can test for

file EOF (IF EOF &FILE) to determine an end of file condition.

Communication Area fields

Easytrieve automatically generates SQL Communication Area (SQLCA) fields if at

least one SQL or SQL table statement is encountered in your program.

Migration Utility automatically generates an SQL INCLUDE for SQLCA in the

generated COBOL source. An Easytrieve copybook of SQLCA is included in the

distributed library. The SQLCA copybook is located in SYS1.SFSYEZTC.

Easytrieve Plus SQL files

To process data from an SQL table via Easytrieve SQL file method, you must code

the following statements and definitions:

1. A file statement specifying one or more table names. If all columns defined in

the file are subject to update, specify the UPDATE keyword on the FILE

statement.

Define one or more fields for the columns within the tables that you want to

retrieve. The fields can be defined using the DEFINE statement or the SQL

INCLUDE statement. When SQL INCLUDE is used, field definitions are

automatically generated from the SQL Catalog. Selective columns can be

updated by coding UPDATE on the SQL INCLUDE and omitting the UPDATE

on the file statement.

2. Code a SELECT statement that defines the result set for the cursor. If the

SELECT statement is omitted, a default SELECT is generated automatically for

SQL data types

114 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

all table columns. The SELECT statement, if coded, must be the first statement

following the JOB statement. Coding your own SELECT gives you the choice of

customizing the result set for the cursor.

Note: A SELECT statement for an SQL file is similar to opening the file. SELECT

coded for a file that is already open first closes the file and the re-opens it

based on the new SELECT.

Examples

This example shows automatic processing with SELECT:

Note: SQL DCLINCL is a required Migration Utility statement.

This example shows automatic processing without SELECT:

Note: SQL DCLINCL is a required Migration Utility statement.

Using DEFER with SELECT

Coding DEFER on the SQL FILE statement gives you an opportunity to code

SELECT anywhere in the logic. SELECT does not have to be coded immediately

after the JOB statement. For example, SELECT can be coded in the START

procedure after the host variable values used in selection have been set.

SQL DCLINCL DCLCTXAB

FILE FILEIN1 SQL

 SQL INCLUDE +

 (CUST_CO_NBR, +

 CUST_ID, +

 ACCT_CO_NBR, +

 ACCT_PRDCT_CD) +

 LOCATION * +

 HEADING +

 UPDATE +

 NULLABLE +

 FROM CUST_B_ACCT_TB

JOB INPUT FILEIN1

SELECT FROM FILEIN1 +

 WHERE (CUST_ID = 315)

 .

SQL DCLINCL DCLCTXAB

FILE FILEIN1 SQL

 SQL INCLUDE +

 (CUST_CO_NBR, +

 CUST_ID, +

 ACCT_CO_NBR, +

 ACCT_PRDCT_CD) +

 LOCATION * +

 HEADING +

 UPDATE +

 NULLABLE +

 FROM CUST_B_ACCT_TB

JOB INPUT FILEIN1

 .

 .

Easytrieve Plus SQL files

Chapter 6. SQL/DB2 support 115

Be careful. If the DEFER is not specified, and the SELECT is coded elsewhere (not

immediately after the JOB statement), a default SELECT is generated in addition to

the coded SELECT, thus causing duplication and performance problems.

Multiple tables

Easytrieve SQL files can be defined with multiple tables, that is, tables can be

joined. Referencing a file that was defined with multiple tables results in a JOIN

for all defined tables.

Example

 FILE FILEIN (TABLE1, TABLE2)

Controlled processing

You can use the FETCH statement (with the SELECT and CLOSE) to retrieve the

records from an SQL file. These statements can be coded within JOB activity with

or without automatic input.

Controlled statements cannot be used in SORT or REPORT procedures.

Fetch cannot be used on automatic input file within the same JOB activity.

However, you can FETCH from a file other than the file subject to automatic input.

Automatic retrieval without a file

In this method, a special JOB and SELECT statements are coded to retrieve the

data.

The retrieval without a file is a read-only method that typically retrieves data into

working storage fields.

The method allows some selection techniques not available for cursors associated

with SQL Files.

The following is required when processing an SQL table using this method:

1. One or more field definitions for the columns within the tables that you want

to retrieve. The definitions can be coded using the DEFINE statement or SQL

INCLUDE statement in working storage. Fields can be also defined within a

file.

2. A JOB statement with the JOB INPUT SQL parameter. SQL denotes that the

input does not involve an SQL File.

3. A non-file based SELECT that defines result set for the cursor. Only one

non-file SELECT statement is allowed within a single JOB activity.

This SELECT statement is different from the FILE based SELECT used with

SQL files. It is more similar to the true SQL SELECT. For example, the tables to

be accessed are named and more advanced functions can be performed such as

UNIONs.

The SQLCODE is tested following each execution of the SELECT statement. The

end of data condition results in the end-of-input processing with all amenities

associated with it.

Example

Using DEFER with SELECT

116 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

This example shows selecting all rows from the USERTAB table (assume that

DECLGEN name is USERTAB).

SQL DCLINCL USERTAB

DEFINE USER-NAME W 20 A

DEFINE USER-DEPT W 2 P 0

DEFINE USER-PHONE W 3 P 0

DEFINE NULL-PHONE W 2 B 0

JOB INPUT SQL

SELECT * FROM USERTAB +

 INTO :USER-NAME, :USER-DEPT, :USER-PHONE :NULL-PHONE

 .

 .

Note: SQL DCLINCL is a required Migration Utility statement.

Native SQL processing

Native SQL statements equivalent to those used in COBOL can be embedded in

the Easytrieve programs. Using these native SQL statements, the programmer can

code fully compliant SQL program.

Migration Utility fully supports all SQL statements. With the exception of the host

variables, the coded statements are punched out unchanged. Thus the user can

code a variety of SQL dialects. The host variable names are adjusted to prevent

potential problems and conflicts with the naming conventions in COBOL.

The following processing requirements must be adhered to:

1. The SQL DECLARE &CURSOR CURSOR and SQL INCLUDE must be coded in

the Library Definition. All other statements must be coded in the Activity

Section.

2. The SQLCODE must be tested after each operation for successful completion.

SQLWARN0 field should be tested whenever SQLCODE of zero is returned.

Coding native SQL requires an advanced knowledge of SQL statements and

database.

Native SQL statements cannot be coded in the SORT and REPORT procedures.

The following native SQL statements are supported:

 CLOSE

 COMMIT

 CONNECT

 DECLARE

 DELETE

 FETCH

 INSERT

 OPEN

 PUT

 ROLLBACK

 SET CURRENT SQLID

 UPDATE

For further information and syntax rules of native SQL statements refer to the

appropriate SQL reference manual.

Automatic retrieval without a file

Chapter 6. SQL/DB2 support 117

118 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Chapter 7. SQL File I/O statement reference

CLOSE statement

The CLOSE statement closes an SQL File.

�� CLOSE &FILE ��

Parameter

&FILE The file to be closed.

At the termination of each activity, all files opened during the activity are

automatically closed. The CLOSE statement can be used to close the file before the

activity terminates. The next I/O statement using the file re-opens it.

A file can also be closed and re-opened to create a new cursor.

The CLOSE statement cannot be used to close a printer file or to close an

automatic input/output file.

Example

 CLOSE FILEIN

DELETE statement

The DELETE statement deletes a row from an SQL File.

�� DELETE

FROM
 &FILE ��

Parameters

&FILE The file from which to delete.

FROM

Is available for readability.

DELETE perform a DELETE WHERE OF cursor. The file must be defined with the

UPDATE parameter.

Example

 DELETE FILEIN

© Copyright IBM Corp. 2002, 2005 119

FETCH statement

The FETCH statement retrieves a row from an SQL File.

�� FETCH

FROM
 &FILE ��

Parameters

&FILE The name of the SQL file.

FROM

Is available for readability.

The FETCH statement retrieves rows from the open cursor and places the data into

the file’s data area. If there is no cursor associated with the file, the cursor

previously selected is re-opened. If no cursor was previously selected, then a

default cursor for all fields FROM &table is opened.

FETCH cannot be used in a SORT or REPORT procedure. The FETCH cannot

reference an automatic input file in the same JOB activity.

Example

 FETCH FILEIN

SQL INCLUDE statement

The SQL INCLUDE specifies the SQL table information to be used to generate field

definitions. It names the table and gives the location where the field definitions are

to be generated.

�� SQL INCLUDE

�

(

column

)

LOCATION

starting-position

*

+

offset

W

S

 �

�
HEADING

UPDATE

NULLABLE
 FROM

owner

.
 &TABLE ��

Parameters

column A list of columns to be included. The Easytrieve field names are generated

for these columns. If no columns are specified, all columns from the table

are included.

LOCATION

The location at which the field definitions are generated.

starting-position

The starting position relative to position one of the record or file.

FETCH statement

120 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

* Indicates that the field begins in the next available starting

position.

offset The offset you want to add to the * position. There must be at least

one blank between the * and the “+”.

W, S Establishes working storage fields.

HEADING

This statement is not supported by Migration Utility. In Easytrieve Plus, it

causes remarks in the DBMS system catalog to be used as HEADINGS.

UPDATE

The generated columns are updated. If UPDATE is coded on the FILE

statement, all columns in the file are modifiable.

NULLABLE

Causes default indicator fields to be generated for columns that contain

NULL. The indicator field is defined as a 2 B 0 field preceding the field

being defined. If the column being defined is used as a host variable, then

the default indicator is used as the null indicator unless overwritten by

coding an indicator variable.

 The indicator variable preceded the data portion of the field in storage.

This field cannot be directly referenced. The IF NULL statement must be

used.

owner 1 to 18-character alphanumeric qualifier

&TABLE

1 to 18-character alphanumeric name.

SQL INCLUDE must precede any other SQL statements and must be coded in the

Library Section of the program.

Example

SQL DCLINCL DCLCTXAB

FILE FILEIN1 SQL

 SQL INCLUDE +

 (CUST_CO_NBR, +

 CUST_ID, +

 ACCT_CO_NBR, +

 ACCT_PRDCT_CD) +

 LOCATION * +

 HEADING +

 UPDATE +

 NULLABLE +

 FROM CUST_B_ACCT_TB

JOB INPUT FILEIN1

SELECT FROM FILEIN1 +

 WHERE (CUST_ID = 315)

 .

 .

Note: SQL DCLINCL is a required Migration Utility statement.

SQL INCLUDE statement

Chapter 7. SQL File I/O statement reference 121

INSERT statement

The INSERT statement inserts a row into an SQL file.

�� INSERT

INTO
 &FILE ��

Parameters

&FILE The name of the SQL file.

INTO Included for readability.

INSERT does not require an open cursor. If the cursor for the file is not open, one

is not opened automatically. If a cursor is open, the inserted row does not appear

in the cursor’s result set until the cursor is closed and re-opened with a new

SELECT statement.

The file must be specified with the UPDATE parameter.

Example

 INSERT FILEIN

UPDATE statement

The UPDATE statement updates a row from an SQL file.

�� UPDATE &FILE ��

Parameter

&FILE The name of the SQL file.

UPDATE issues an UPDATE WHERE CURRENT OF cursor.

When the file is defined with the UPDATE, all defined columns are updated,

otherwise only columns defined with the UPDATE are updated. Refer to the

description of the SQL INCLUDE statement.

Example

 UPDATE FILEIN

SELECT statement

A SELECT statement issued for an SQL file causes a cursor to be automatically

declared and opened as a file. The resulting cursor can then be fetched and

updated by subsequent commands for the file. The cursor can also be used for

automatic input using the JOB statement.

INSERT statement

122 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

�� SELECT

DISTINCT

FROM
 &FILE

WHERE

search-condition-1
 �

�
GROUP BY

column name

HAVING

search-condition-2
 �

�

�

�

ORDER BY

COLUMN-NAME

ASC

DES

INTEGER

FOR UPDATE
 ��

Parameters

DISTINCT

Eliminates duplicate rows. If omitted, all rows are supplied.

FROM

Code for readability.

&FILE An SQL file.

search-condition-1

Conditions for the retrieval of data.

column name

Columns for group fetches of data into the file.

search-condition-2

Condition specifying the data to be returned to the user, for example, a

range of values.

ORDER BY

Returns the rows in the sequence of specified columns. ASC is ascending

order, DESC is descending order.

FOR UPDATE

Allow updates of the updateable fields in the &FILE.

If no SELECT is issued for the &FILE, the default SELECT is used (all rows are

selected).

If SELECT is the first statement in a JOB activity that matches an SQL file in

automatic input, it overrides the default SELECT.

SELECT can be coded in a JOB’s START procedure. If so, DEFER should be coded

on the FILE statement to avoid duplication and performance problems.

If a SELECT is specified for a file that already has an open cursor, the cursor is

closed and a new one is opened.

Example

SQL DCLINCL USERTAB

DEFINE USER-NAME W 20 A

DEFINE USER-DEPT W 2 P 0

DEFINE USER-PHONE W 3 P 0

SELECT statement

Chapter 7. SQL File I/O statement reference 123

DEFINE NULL-PHONE W 2 B 0

JOB INPUT SQL

SELECT FROM USERTAB WHERE USER-NAME = ’JOHN’

 .

 .

Note: SQL DCLINCL is a required Migration Utility statement.

SELECT statement

124 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Chapter 8. DLI/IMS support

Migration Utility provides a DLI/IMS interface. The functions described in this

chapter are compatible with Easytrieve Plus, except as otherwise noted.

Three basic statements facilitate the DLI interface:

1. FILE is used to define the DLI files.

A FILE statement is required for each database to be processed. It defines the

database records (segments) and the parent/child relationships.

2. RETRIEVE is used for the Automated Job inputs.

The RETRIEVE statement is required when you want to read a DLI file

automatically via a JOB statement. It must be coded immediately after the JOB

statement.

Note: The file name used in the RETRIEVE statement must be the same file

named on the JOB statement.

3. DLI is used to do the DLI I/Os in a controlled environment.

The DLI statement can be used as needed in your program logic. Its syntax

closely resembles the DLI call used by third-generation languages such as

COBOL. The only parameter that you do not code is the PCB name. All other

parameters are the same or very similar.

IMS/DLI concepts

In-depth description of DLI/IMS database concepts is beyond the scope of this

document. However, here are a few points and some terminology to remember.

A DLI/IMS database is defined via the Data Base Definition macros (DBD macros).

Among other things, the DBD contains the description of all records/segments, the

field definitions in each segment, and the field key of each segment supported by

that data base. The DBD is typically built by the DBD Administrator, and a load

module/table is created to be used at run time.

To access a data base in an Easytrieve Plus program, the record (segment)

definitions must be defined to your program. Creating an Easytrieve Plus macro of

these definitions is recommended. Refer to “RECORD definition” on page 127 for

details.

The I/O path for accessing your database is defined using the Program

Specification Block (PSB) macro. The PSB identifies the data base, the segments,

and the segment relationships for a complete I/O path. The PSB must be

assembled and linked into a load library (typically by the database administrator)

before it can be used. The PSB load module you create is passed to the DLI driver

program via this statement in your JCL:

EXEC PGM=DFSRRC00,PARM=(PARM=’DLI,&PGMNAME,&PSBNAME’)

The Program Communication Block (PCB) is an area in memory created by the

DLI DFSRRC00 driver program before passing control to your application routines.

One PCB is built for each database to be accessed, plus an IO PCB for doing

system calls (if CMPAT=YES is specified on the PSB macro). The pointers of these

© Copyright IBM Corp. 2002, 2005 125

in-memory PCBs are received by your Easytrieve Plus or Migration Utility

program at run time. These PCBs are used for DLI calls by your program.

It is critical that the PSB definitions correspond to the path as coded by the

RECORD definitions in your program. Out-of-sequence entries will cause I/O

errors.

Translating DLI/IMS programs

The JCMUIMSJ sample JCL can be found in the SYS1.SFSYJCLS Migration Utility

library. It is also listed in “Migration Utility JCL.”

To run Link and Go jobs, you must provide in the JCL the necessary application

files that your program needs. To translate and link (create a load module) only,

you can use any other JCL/PROC as described in Chapter 2, “Using Migration

Utility,” on page 5.

To run Link and Go or compiled programs, you must execute the DFSRRC00 DLI

program driver. The drive program then loads the application program specified

on the PARM statement. If you are doing Link and Go, then your application

program would be FSYTPA00, otherwise it would be the name of your linked load

module. The "//IMS DD ..." or "//IMSACB DD . . . " statement must be included

in the JCL to point to any load libraries where your PSB and DBD modules are

located.

Summary of supported features

These features are supported:

v FILE definition

v RECORD definition

v FOR ACCESS statement

v RETRIEVE statement

v DLI I/O call statements

v DLI CHKP basic checkpoint

v DLI CHKP symbolic checkpoint

v DLI XRST extended restart

Summary of unsupported features

These features are not supported:

v Easytrieve Plus extended checkpoint/restart on:

– PARM statement

– JOB statement

– RETRIEVE statement

– REPORT statement

IMS/DLI concepts

126 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

|

|

FILE definition

The FILE statement is coded in your program to identify the database to be used.

�� FILE &FILE-NAME DLI (&DBDNAME &PCBNO)

RESET
 ��

Parameters

&FILE-NAME Is the 1 to 8 character name used in your program to reference the

database.

DLI Declares the file as a DLI database file.

&DBDNAME The name of your IMS database. This is the 1 to 8 character name

of your database defined via the IBM DBD macro.

&PCBNO PCB sequence number within the DBD.

RESET This parameter is ignored by Migration Utility.

Example

 FILE JOURNAL DLI (DBXXX100)

RECORD definition

The database segments to be used by your program are identified by the RECORD

statement.

Segments must be defined in the same sequence as defined in your PSB. You need

to define only those segments that are needed in your program, however, the

parent segment must be provided for each. Partial paths are not supported.

�� RECORD &SEGMENT &SEGSIZE

&PARENT
 �

�
KEY

(

&KEY

&POS

&KEYSIZE

)
 ��

Parameters

&SEGMENT A 1 to 8 character segment name as defined in the DBD.

&SEGSIZE Segment size (in bytes).

&PARENT The name of the parent segment. This parameter is required for all

segments except the root segment.

KEY Identifies the segment key as defined in the DBD. This parameter

is required for the RETRIEVE statement when using Tickler file.

&KEY The key name (sequence field) as defined in the

DBD.

FILE definition

Chapter 8. DLI/IMS support 127

|
|

||||||||||||||||||||||||||

|

||

&POS An integer that identifies the location of the key in

the segment record.

&KEYSIZE An integer that specifies the key length.

Note: The file PCB layout can be defined before the first RECORD definition. In

the example below, JOURNAL-PCB-STATUS maps the status code returned

by DLI. The value is equivalent to JOURNAL:FILE-STATUS, thus the

definition is really not needed. A complete description of the PCB layout can

be found in the IBM DLI/IMS reference manuals.

Example

RETRIEVE statement

The RETRIEVE statement encapsulates the logic that performs automatic database

input for a complete database path. It must be coded immediately after the JOB

statement.

The following parameters are available:

�� RETRIEVE &FILE-NAME

KEYFILE

&KEYFILE

KEYVALUE

&KEYFIELD
 �

�

�

SELECT

(

&SEGMENT

)

ID

&ID

LIMIT

&LIMIT

SSA

&SSA

WHILE

(&condition)

�

�

�

CHECKPOINT

&FREQUENCY

USING

(

)

&FIELDn

 ��

&FILE-NAME

DLI file name as defined by the FILE statement

KEYFILE

Designates that a tickler file is to be used.

&KEYFILE

Tickler file ddname as defined by the FILE statement. This

FILE JOURNAL DLI (DBXXX100)

JOURNAL-PCB-STATUS 11 2 A

RECORD DBSEGM00 120 KEY (SG00KEY 1 20)

 SG00KEY 1 20 A

 SG00-DATA 21 100 A

RECORD DBSEGM05 154 DBSEGM00

 SG05KEY 1 12 A

 SG05-DATA 13 142 A

RECORD DBSEGM10 140 DBSEGM05

 SG10KEY 1 10 A

 SG10-DATA 11 130 A

RECORD definition

128 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

must be a sequential file that contains the keys to be

retrieved from the root segments. The file is read

sequentially. The key values are used as SSA (segment

search arguments) for accessing the root segments. A Get

Unique (GU) call is issued to DLI to retrieve the unique

key found on the tickler file. The End of tickler file marks

the end of automatic input and the RETRIEVE logic.

 Note that the SSA option cannot be used for the root

segment when the tickler file is in use.

&KEYFIELD

Identifies the field name to be used as the segment search

argument (SSA).

SELECT (...)

Segment select statement. One or more segments can be coded,

each followed by the select options:

&SEGMENT

Segment name to retrieve.

ID Segment identification code.

 &ID is a 2-digit literal for identifying the retrieved paths

(segments). The &ID is moved to the system-defined field

PATH-ID for the lowest accessed segment in the path. The

literal can be any two characters allowed by the system.

When accessing root segments using a tickler file, PATH-ID

is automatically set to ’NF’ (not found) by the RETRIEVE

logic.

LIMIT

Segment limit identifier.

 &LIMIT is the number of segments to retrieve. This limit

applies to each segment in the path. If LIMIT is not coded,

all segments are retrieved in each path.

SSA Segment search identifier

 &SSA is the root segment SSA. This option cannot be used

when a tickler file is in use. The supplied value is enclosed

in parentheses and concatenated with the segment name,

by the RETRIEVE logic, to form a valid SSA.

WHILE (&condition)

A conditional expression for selecting on specific segment

field values.

 &condition is a conditional expression. The syntax for this

expression is the same as that of the DO WHILE statement

described in “DO and END-DO statements” on page 76.

Segments are accepted for input only when the WHILE

expression is true, otherwise they are bypassed.

CHECKPOINT

Checkpoint information (not supported by Migration Utility)

&FREQUENCY

An integer indicating the checkpoint interval (frequency)

RETRIEVE statement

Chapter 8. DLI/IMS support 129

USING List of fields to be restored at restart time. &FIELD1 ...

&FIELDn are the field names to be restored.

Programming notes:

1. With RETRIEVE, you can sweep the entire database without coding the

detailed calls to DLI. Segments are retrieved starting with the root segment and

all subordinate child segments in the path, up to the lowest segment in the

path. When a path is fulfilled, all retrieved segments are returned in the

respective segment records as defined for the DLI file in use. Processing

continues with the first instruction coded after the RETRIEVE statement.

2. You can code ID &ID for each segment to identify the lowest segment in use.

The system defined field PATH-ID can then be tested to find out the lowest

segment returned.

3. RETRIEVE is coded immediately after the JOB statement. The file on the JOB

statement must reference a valid DLI file that contains segments the RETRIEVE

is operating on.

DLI statement

The DLI statement provides controlled access to an IMS/DLI database. DLI

statements are used in the Activity Section independently of the RETRIEVE

statement. This section describes the four DLI formats.

Format-1: DLI application I/O calls

�� DLI &FILE-NAME &SEGMENT &FUNCTION

SSA

&SSA

SSANO

&SSANO
 ��

Parameters

&SEGMENT I/O area segment name coded on a RECORD statement, or a

working storage field name. In either case, the size of this storage

must be large enough to hold the retrieved segments.

SSA &SSA Identifier for SSA.

 &SSA is an optional segment search argument. Multiple search

arguments can be coded. &SSA can be a field name or a string

(alphanumeric literal). DLI SSA coding rules must be observed.

SSANO &SSANO

&SSANO is a 4-byte binary field that identifies the number of SSA

parameters. This parameter is bypassed by ∏. The number of

SSA parameters is always assumed to be the number of coded SSA

statements.

 The I/O return code is placed in the system reserved field &FILE:FILE-STATUS:

SPACES A good call

’GB’ EOF (end of data base)

’GE’ End of segment

Any other value indicates an error.

RETRIEVE statement

130 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Format-2: Basic checkpoint

This basic CHKP commits the changes your program has made to the database. It

establishes a point of restart from which your program can be restarted after an

abnormal termination. The CHKP DLI call can be used only when your PSB is

generated with the CMPAT=YES option.

�� DLI CHKP &AREA ��

Parameters

&AREA An area that contains 8-byte checkpoint ID. This is an input

parameter.

 After the call, spaces in the CHKP-STATUS system reserved name indicates a good

call.

Format-3: Symbolic checkpoint

A symbolic checkpoint is used for the recovery purposes. When symbolic CHKP is

used in your program, the XRST must be used as well.

The symbolic CHKP commits the changes your program has made to the database

and it saves areas defined in your program for restarting (XRST), should your

program terminate abnormally.

An XRST is required before CHKP to activate the IMS symbolic checkpoint

interface. The XRST must be issued with a check point ID of blanks.

��

DLI

CHKP

&IOLENGTH

&IOAREA

�

&LENGTH

&AREA

��

Parameters

&IOLENGTH Length of &IOAREA. This must be a valid integer.

&IOAREA An area that contains the 8-byte ID for this checkpoint. This is an

input parameter.

&LENGTH Length of &AREA field. This must be a valid integer.

&AREA An area in your program that you want to checkpoint. This is an

input parameter. This area is saved by IMS for restart.

 Up to seven pairs of &LENGTH &AREA can be coded. When you

restart your program, IMS restores only the areas specified in the

CHKP call.

 After the call, spaces in the CHKP-STATUS system reserved name indicates a good

call.

DLI statement

Chapter 8. DLI/IMS support 131

Format-4: Extended restart

The Extended Restart (XRST) is used to restart your program after it terminates

abnormally. If the CHKP is being used, an XRST is required before the CHKP to

activate the IMS symbolic checkpoint interface. The XRST must be issued with a

check point ID of blanks.

��

DLI

XRST

&IOLENGTH

&IOAREA

�

&LENGTH

&AREA

��

Parameters

&IOLENGTH Length of &IOAREA. This must be a valid integer.

&IOAREA An area that contains the 14-byte checkpoint ID for this restart, or

blanks when starting your program normally. This is an input

parameter.

&LENGTH Length of &AREA field. This must be a valid integer.

&AREA An area in your program that you want IMS to restore. Up to

seven pairs of &LENGTH &AREA can be coded. When you restart your

program, IMS restores only the areas specified in the CHKP call.

 After the call, spaces in the CHKP-STATUS system reserved name indicates a good

call.

Restarting your program

IMS determines whether to perform a normal start or restart based on the

&IOAREA provided on XRST, or CKPTID= value provided in the PARM field on

the EXEC statement in your JCL. If you supply both parameters, IMS will use the

one from the CKPTID= parameter.

The ID specified can be any of the following:

v A 1 to 8 character extended checkpoint ID

v A 14 character time stamp ID from DFS0540I message where:

 IIII is the region ID

 DDD is the day of the year

 HHMMSSR is the time in hours, minutes, seconds, and tenths of a second
v The constant LAST. (BMPs only: indicates that the last checkpoint issued by BMP

will be used.)

The system message DFS0540I supplies the checkpoint ID and the time stamp.

The system message DFS682I supplies the last completed checkpoint which can be

used to restart your program.

IMS writes checkpoint-restart information to the Online Log data set or System

Log data sets, The //IMSLOGR DD statement must be supplied in the JCL if the

Online Log is no longer available. IMS searches these data sets for the checkpoint

records with the ID that was specified.

DLI statement

132 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Restriction: The original job name of the job that failed must be used for the

restart run. Otherwise, IMS will not be able to locate the checkpoint

records it needs, it which case, IMS fails with code U0102.

At successful completion of XRST, the &IOAREA contains an 8-character

checkpoint ID, or a 14-character time stamp. The time stamp is returned when the

XRST is issued with blanks in the checkpoint ID.

Spaces in the CHKP-STATUS system reserved name indicates a successful restart.

DLI FOR ACCESS statement

The DLI FOR ACCESS statement allows the user to access the DLI file RECORD

fields without referencing the DLI file in the job logic. Its main purpose is to allow

users to populate DLI file records by means of a CALL to an external program.

Format-1

�� DLI &FILE-NAME FOR ACCESS ��

Parameters

&file-name DLI file name as defined by the FILE statement.

DLI program examples

Example 1—Sweep of database using RETRIEVE statements

This example demonstrates a sweep of an entire journal database called DBXXX100

using RETRIEVE statements.

Our database consists of three segments: DBSEG00, DBSEGM05, and DBSEGM10.

DBSEG05 is a child of the DBSEG00 root segment, and DBSEG10 is a child of the

DBSEG05 segment.

The logic below reads the entire data base starting with the first root segment and

its subordinate child segments. Multiple child segments are read until all segments

are processed in each hierarchy. Note that this automatic input follows the same

logic as that in Example 2.

DLI statement

Chapter 8. DLI/IMS support 133

|

|
|
|

|

|

|||||||||||
|
|

|

||

Example 2—Sweep of database using controlled DLI

statements

This example demonstrates a sweep of the DBXXX100 journal database using

controlled DLI statements.

Our database DBXXX100 consists of three segments; DBSEG00, DBSEGM05, and

DBSEGM10. DBSEG05 is a child of the DBSEG00 root segment, and DBSEG10 is a

child of the DBSEG05 segment.

The logic below reads the entire data base starting with the first root segment and

its subordinate child segments. Multiple child segments are read until all segments

are processed in each hierarchy.

PARM LINK (TESTIMS2 R)

* EASYTRAN: DEBUG (LIST COBOL)

* END-EASYTRAN

FILE JOURNAL DLI (DBXXX100)

RECORD DBSEGM00 120 KEY (SG00KEY 1 20)

 SG00KEY 1 20 A

 SG00-DATA 21 100 A

RECORD DBSEGM05 154 DBSEGM00

 SG05KEY 1 12 A

 SG05-DATA 13 142 A

RECORD DBSEGM10 140 DBSEGM05

 SG10KEY 1 10 A

 SG10-DATA 11 130 A

JOB INPUT JOURNAL START INITIALIZE

RETRIEVE JOURNAL +

 SELECT (DBSEGM00 ID ’RT’ +

 SSA ’SG00KEY > ’ +

 DBSEGM05 ID ’05’ +

 DBSEGM10 ID ’10’)

IF PATH-ID EQ ’10’

 * ALL SEGEMNTS ARE AVAILABLE HERE

 CONTINUE

ELSE-IF PATH-ID EQ ’05’

 * DBSEG00 AND DBSEG05 ARE AVAILABLE ONLY

 CONTINUE

ELSE-IF PATH-ID EQ ’RT’

 * DBSEG00 IS AVAILABLE ONLY

 CONTINUE

END-IF

GO TO JOB

INITIALIZE. PROC

* INSERT INITIALIZE STATEMENTS HERE

END-PROC

DLI program examples

134 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

PARM LINK (TESTIMS1 R) SORT (DEVICE TEMP)

* EASYTRAN: DEBUG (LIST COBOL)

* END-EASYTRAN

FILE JOURNAL DLI (DBXXX100)

RECORD DBSEGM00 120

 SG00KEY 1 20 A

 SG00-DATA 21 100 A

RECORD DBSEGM05 154 DBSEGM00

 SG05KEY 1 12 A

 SG05-DATA 13 142 A

RECORD DBSEGM10 140 DBSEGM05

 SG10KEY 1 10 A

 SG10-DATA 11 130 A

K00-SSA W 42 A

 KSF K00-SSA 20 A VALUE ’DBSEGM00(SEG00KEY > ’

 KSD K00-SSA +20 20 A VALUE LOW-VALUES

 KSE K00-SSA +40 2 A VALUE ’) ’

S00-SSA W 42 A

 SSF S00-SSA 20 A VALUE ’DBSEGM00(SEG00KEY = ’

 SSD S00-SSA +20 20 A VALUE LOW-VALUES

 SSE S00-SSA +40 2 A VALUE ’) ’

S05-SSA W 23 A

 SLF S05-SSA 20 A VALUE ’DBSEGM05(SEG05KEY = ’

 SLD S05-SSA +20 1 A VALUE ’ ’

 SLE S05-SSA +21 2 A VALUE ’) ’

WSEGID W 8 A

JOB INPUT NULL START INITIALIZE

* READ NEXT ROOT SEGMENT

NEXT-ROOT

 DLI JOURNAL DBSEGM00 ’GN ’ SSA (K00-SSA)

 IF JOURNAL:FILE-STATUS EQ ’GB’ ’GE’

 RETURN-CODE = 0

 STOP

 ELSE-IF JOURNAL:FILE-STATUS NE ’ ’

 WSEGID = ’DBSEGM00’

 PERFORM PRINT-ERROR

 RETURN-CODE = 16

 STOP EXECUTE

 END-IF

DLI program examples

Chapter 8. DLI/IMS support 135

* READ NEXT DBSEGM05 IN THE CURRENT ROOT SEGMENT

NEXT-SEG0

 SSD = SG00KEY

 DLI JOURNAL DBSEGM05 ’GNP ’ SSA (S00-SSA, ’DBSEGM05 ’)

 IF JOURNAL:FILE-STATUS EQ ’GE’

 GO TO JOB

 ELSE-IF JOURNAL:FILE-STATUS NE ’ ’

 WSEGID = ’DBSEGM05’

 PERFORM PRINT-ERROR

 RETURN-CODE = 16

 STOP EXECUTE

 END-IF

* READ NEXT DBSEGM10 IN THE CURRENT DBSEGM05 SEGMENT

NEXT-SEG1

 SLD = SG05KEY

 DLI JOURNAL DBSEGM10 ’GNP ’ SSA (S00-SSA, S05-SSA ’DBSEGM10 ’)

 IF JOURNAL:FILE-STATUS EQ ’GB’

 GO TO JOB

 ELSE-IF JOURNAL:FILE-STATUS EQ ’GE’

 GO TO NEXT-SEG0

 ELSE-IF JOURNAL:FILE-STATUS NE ’ ’

 WSEGID = ’DBSEGM10’

 PERFORM PRINT-ERROR

 RETURN-CODE = 16

 STOP EXECUTE

 END-IF

* INSERT PROGRAM LOGIC HERE

 GO TO NEXT-SEG1

PRINT-ERROR. PROC

 DISPLAY WSEGID +

 ’ ERROR JOURNAL:FILE-STATUS: ’ JOURNAL:FILE-STATUS

END-PROC

INITIALIZE. PROC

* DO THE NECESSARY INITIALIZATION HERE

END-PROC

136 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Chapter 9. Creating HTML and spreadsheet files

Migration Utility provides statements that allow you to create reports and files that

can be easily accessed by the standard HTML browsers and spread sheet software.

You can create:

v Character Separated Values (CSV) files and reports

v HTML Drill Down reports

v A combination of Drill Down and CSV reports

The HTML and CSV reports can be placed in a PDS file, then downloaded to a

server and parsed so that they can be accessed by a browser. To do the parsing,

use the supplied JAVA utility, fsyjpars.class.

The CSV files and HTML reports can be written to the UNIX File System on z/OS

and accessed by a browser directly from the z/OS server. No file transfer or

parsing is needed.

Notes:

1. Job JCMUDRL1, located in SYS1.SFSYJCLS, contains a complete example of a

program that creates HTML Drill Down and CSV reports (also listed at end of

this chapter).

2. Job JCMUDRL2, located in SYS1.SFSYJCLS, contains a complete example of a

program that creates a CSV file and a CSV report (also listed at end of this

chapter).

3. Job JCMUDRLU, located in SYS1.SFSYJCLS, contains a complete example of a

program that creates Drill Down reports and writes HTML documents directly

to a mainframe UNIX File System (also listed at end of this chapter).

Character Separated Value (CSV) files and reports

You can download the CSV files and reports from the mainframe, or place them on

the mainframe web server, and import them into many commonly used

spreadsheets.

To create a CSV file, you use one or more DISPLAY statements with a SEP=

parameter.

To create a CSV report , you code a standard REPORT statement with a SEP=

parameter.

Syntax

�� SEP=(’&char’)

MASK
 ��

Where:

&char One or more characters to insert

MASK Mask option:

© Copyright IBM Corp. 2002, 2005 137

|
|
|

|

|

|

|
|
|

|
|
|

|

|
|
|

|
|
|

|
|
|

|

|
|
|

|
|

|
|
|

|

||||||||||||||||

|
|

|

||

||

If MASK is coded, Migration Utility uses the field mask as coded

on the field definition or the default mask. For example, 123,456.88.

 If MASK is not coded, Migration Utility formats numeric fields

without edit characters and inserts the decimal point and a leading

sign. For example, -123456.88.

The SEP= parameter triggers Migration Utility to inserts the specified characters

after each field.

Examples:

Create comma-separated fields to a file named CSVFILE1 (assume that all fields on

the DISPLAY statement are defined and that “FILE CSVFILE1 F (100)” has been

defined).

1. To create field values for the CSVFILE1 file without edit characters, write:

DISPLAY CSVFILE1 SEP=(’,’) FIELD1 ’CSV TEST RECORD ’ FIELD2 FIELD3

2. To create fields for the CSVFILE1 file with the default MASK, write:

DISPLAY CSVFILE1 SEP=(’,’ MASK) FIELD1 ’CSV TEST RECORD ’ FIELD2 FIELD3

3. To create report RPT1 with CSV fields without edit characters, write:

REPORT RPT1 SEP=(’,’) ...

4. To create report RPT1 with CSV fields with the default MASK, write:

REPORT RPT1 SEP=(’,’ MASK) ...

Job JCMUDRL2, located in SYS1.SFSYJCLS, contains a complete example of a

program that creates a CSV file and a CSV report.

HTML Drill Down reports

The Drill Down reports are HTML-ready reports that can be browsed using

standard Internet browsers such as Internet Explorer or Netscape.

You can create reports as a single PDS file, or write them out directly to a UNIX

File System on the z/OS as follows:

v When you create a PDS file, you must download the file, parse it, and place it

on a server where it can be accessed with a browser. To do the parsing, use the

supplied Java utility, fsyjpars.class.

v When you write the reports to a UNIX File System on z/OS, you can access

them with a browser directly from the z/OS server. No file transfer or parsing is

needed.

Concepts

A Drill Down hierarchy consists of a Drill Down document and Drill Down

reports.

A Drill Down document defines:

v One or more Drill Down menu items (lines to be included in the index page).

v The Drill Down report names to be anchored as a group for each menu item.

Figure 1 on page 139 generalizes the concept.

Character Separated Value (CSV) files and reports

138 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

|
|

|
|
|

|
|

|

|
|
|

|

|

|

|

|

|

|

|

|
|

|

|
|

|
|

|
|
|

|
|
|

|

|
|

|

|

|

|
|

For example, to define a Drill Down document called HTMLFL1 that is accessed

from the menu as “INCOME FROM SERVICES (TEXT)” with Drill Down reports

by CO-NAME and BR-NAME, you need to name three separate reports, one for

each control break, and the last one as the DETAIL report:

REPORT <DOC> HTMLFL1 VALIDATE

DRILL MENU 1 #(RED BOLD) +

 ’INCOME FROM SERVICES (TEXT)’ #GREEN SYSDATE

DRILL DOWN RPT1 CO-NAME RPT2 BR-NAME RPT3 DETAIL

Each named report RPT1, RPT2 and RPT3 is defined using the standard Easytrieve

Plus REPORT statement, in combination with some additional parameters that add

font and attribute capabilities for appearance.

For each report, you must code a separate REPORT statement with exactly one

control break specifying the field name listed in the DRILL DOWN statement, with

the last report declared as the DETAIL report, and all other reports in the hierarchy

as SUMMARY reports.

REPORT RPT1 SUMMARY ...

CONTROL CO-NAME ...
REPORT RPT2 SUMMARY ...

CONTROL BR-NAME ...
REPORT RPT3 ...

CONTROL DETAIL ...

Migration Utility checks that each control break named in the DRILL DOWN

report list is the same as the one defined on CONTROL statement of each report.

When accessed using a browser, the Drill Down reports follow the hierarchy of

control breaks. That is, each control break represents a layer of HTML pages that

have links to the lower level reports (parent and child relationship). In the

examples above, MENU links to RPT1, the RPT1 entries link to RPT2, and the

Drilldown

Document

MENU

item 1

MENU

item n

&REPORT-1

(SUMMARY)

&REPORT-2

(SUMMARY)

&REPORT-n

(DETAIL)

&REPORT-1

(SUMMARY)

&REPORT-2

(SUMMARY)

&REPORT-n

(DETAIL)

Drilldown

Document

MENU

item 1

MENU

item n

&REPORT-1

(SUMMARY)

&REPORT-2

(SUMMARY)

&REPORT-n

(DETAIL)

&REPORT-1

(SUMMARY)

&REPORT-2

(SUMMARY)

&REPORT-n

(DETAIL)

Figure 1. Drill Down reports

HTML Drill Down reports

Chapter 9. Creating HTML and spreadsheet files 139

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
||||
|
||||
|
||||

|
|

|
|
|
|

RPT2 entries link to RPT3. Think of it as three distinct reports, with each higher

level linking to detail data that belongs to it.

Note that each report is printed using the PRINT statement, just like any other

report. Because of dependencies, each report in the Drill Down group must be

produced using the same input data. Feeding reports with different data may

result in unresolved links.

Job JCMUDRL1, located in SYS1.SFSYJCLS, contains a complete example of a

program that creates Drill Down reports (also listed at end of this chapter).

Defining Drill Down documents

��

�

 REPORT <DOC> &docname

VALIDATE

NOVALIDATE

&css

(

&attribute

)

 ��

��

�

DRILL MENU

&line

&field

&attribute

��

��

�

DRILL DOWN

&RPT

&control

&RPT

DETAIL

��

Parameters

&docname Document file ddname. The file must be a PDS file with DCB and

DISP coded in the JCL as:

DCB=(LRECL=4096,RECFM=VB,BLKSIZE=,DSORG=PO)

DISP=(MOD,CATLG,DELETE)

Note: At application run time, a PDS member, &docname, is created

for all reports identified in the DRILL DOWN lists. To make

&docname ready for a browser, you must download it into a

server and parse it into constituent directories and files

using the supplied JAVA program, fsyjpars.class.

VALIDATE This is the default. Prompts Migration Utility to generate logic that

validates the Drill Down URLs (links). When used, you must

supply FJWDOC0, SORTIN, and FJEDOC0 ddnames in the

application runtime JCL. See “Drill Down JCL requirements” on

page 148.

NOVALIDATE

Prompts Migration Utility to ignore the URL validation logic.

HTML Drill Down reports

140 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

|
|

|
|
|
|

|
|

|

|

|||||||||||||||||||||||||||||||||||||

|
||

|||||||||||||||||||||

|
||

|||||||||||||||||||

|
|

|

||
|

|
|

|
|
|
|
|

||
|
|
|
|

|
|

&css Default Cascaded Style Sheets (CSS) templates. Migration Utility

reads these templates from the SYS1.SFSYDOCS PDS, depending

on the DOCTYPE specified on the REPORT statement.

$B1 CSS for HTML BODY

$TB CSS for table body

$TH CSS for table headers

$TR CSS table rows

$TD CSS table data

$LN CSS for text line

$CP CSS table caption

&attribute Default attribute to be used for building HTML documents. You

can specify a color and font. See “Available Attributes” on page

146.

&line Menu item number (the line number on the menu frame). This

must be an integer from 1 to 99.

&field Field or literal value to be included on the menu line. Code these

elements as you would for a DISPLAY statement.

&RPT Drill Down Report name to be included in the drill down

hierarchy.

&control Control break as specified for each report &RPT. &control for the

last report must be coded as “DETAIL”.

 DRILL MENU and DRILL DOWN statements are coded in pairs, each pair

defining a Drill Down hierarchy. You can define multiple Drill Down hierarchies

within a single Drill Down document.

Example

 REPORT <DOC> HTMLFL1 VALIDATE +

 $B1 (BLUE) +

 $TB (BLUE) +

 $TR (BLUE) +

 $TH (BLUE)

 DRILL MENU 1 #(RED BOLD) +

 ’INCOME FROM SERVICES (TEXT)’ #GREEN SYSDATE

 DRILL DOWN RPT1 CO-NAME RPT2 BR-NAME RPT3 DETAIL

 DRILL MENU 2 #(RED BOLD) +

 ’INCOME FROM SERVICES (TABLE)’ #GREEN SYSDATE

 DRILL DOWN RPT21 CO-NAME RPT22 BR-NAME RPT23 DETAIL

Defining Drill Down Reports

Each Drill Down report named in the REPORT document is defined using the

standard Easytrieve Plus REPORT statement parameters. The following sections

describe additional parameters that you can use.

Insert character for CSV reports

This parameter specifies the insert character for CSV reports.

Defining Drill Down documents

Chapter 9. Creating HTML and spreadsheet files 141

||
|
|
||
||
||
||
||
||
||

||
|
|

||
|

||
|

||
|

||
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|

|
|

��

SEP=(

’&char’

)

MASK

 ��

&char One ore more characters to insert.

MASK Mask option.

 If MASK is coded, Migration Utility uses the field mask as coded

on the field definition, or the default mask. For example,

123,456.88.

 If MASK is not coded, Migration Utility formats numeric fields

without edit characters, and inserts the decimal point and a

leading sign. For example, -123456.88.

The SEP= parameter triggers Migration Utility to inserts the specified characters

after each field for the DOCTYPE CSV reports.

HTML document type

This parameter specifies the type of HTML document to create.

��

TEXT

DOCTYPE

TABLE

CSV

 ��

TEXT Create HTML pages in text format.

TABLE Create HTML pages in TABLE format.

CSV Create Character Separated Value (CSV) report. These files are

created with a .csv file type.

Note: To simplify the accessability of CSV files, adjust the MIME

type on your PC browser to use a specific spreadsheet

program for .csv files.

Link identifier for PREV and NEXT buttons

This parameter specifies the link identifier for the PREV and NEXT buttons.

��

Drill

LINKID

NO

’&id’

 ��

NO Do not create PREV/NEXT link buttons.

&id Literal to be included on the NEXT and PREV buttons. Can be

1–16 characters long.

Insert character for CSV reports

142 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

|||||||||||||||||||||

|
|

||

||

|
|
|

|
|
|

|
|

|

|
|

||||||||||||||||||||||

|
|

||

||

||
|

|
|
|

|

|
|

||||||||||||||||||||||

|
|

||

||
|

Templates and attributes

This parameter specifies the templates and attributes for a report

��

�

&css

’&attribute’

 ��

&css Default Cascaded Style Sheets (CSS) templates specific to this

report. Migration Utility reads these templates from the

SYS1.SFSYDOCS PDS depending on the DOCTYPE specified on

the REPORT statement.

$B1 CSS for HTML BODY

$TB CSS for table body

$TH CSS for table headers

$TR CSS table rows

$TD CSS table data

$LN CSS for text line

$CP CSS table caption

&attribute Default attribute to be used for building HTML documents. You

can specify the color and font to be used. See “Defining field

attributes” on page 145.

REPORT statement considerations

PAGESIZE &n

In most situations, this parameter defines the number of lines for

each report page. However, for Drill Down reports, it defines the

number of lines for each HTML page.

 Each HTML page is generated as a separate file. Therefore, when

selecting the PAGESIZE, you should take care to ensure that each

HTML page gives you the optimum number of lines. Too few lines

results in more frequent paging and additional overhead while

creating directories on your server. Too many lines causes longer

scrolling pages.

 To inhibit paging, specify PAGESIZE 0.

TITLESKIP 1 Use this parameter to avoid unnecessary blank lines in the HTML

document.

SPACE 1 Use this parameter to avoid unnecessary spaces between fields in

CSV reports.

SUMMARY Use this option for all reports in the specified DRILL DOWN

hierarchy except the last report. The last report can be a

SUMMARY or a DETAIL report.

SUMCTL (ALL DTLCOPY)

Use this parameter for SUMMARY reports to make sure that all

relevant information is shown on each report line.

Templates and attributes

Chapter 9. Creating HTML and spreadsheet files 143

|

|
|

||||||||||||||||||

|
|

||
|
|
|
||
||
||
||
||
||
||

||
|
|

|

|
|
|
|

|
|
|
|
|
|

|

||
|

||
|

||
|
|

|
|
|

CONTROL statement considerations

CONTROL statements must name the same field name as specified for each report

named in the DRILL DOWN hierarchy. You can only specify one control break

field. The last report in the DRILL DOWN hierarchy must specify DETAIL for

control break (even if you specify SUMMARY on the REPORT statement). The last

(DETAIL) report can list additional control break fields following the DETAIL

parameter.

FINAL totals:

v Can be printed only when one report is named in the DRILL DOWN list.

v Can not be printed when multiple reports are named in the DRILL DOWN list.

EZPARAMS/EASYTRAN options

PRINTER=AUTOGEN

This is a required option. Alternatively, you can specify a PRINTER

file for each report. Note that SYSPRINT cannot be used for the

Drill Down reports as each report must be written to a separate

file.

Field attributes

Migration Utility provides syntax for specifying field attributes such as the font

type, font size, and color. You can conditionally set these attributes with the

WHEN wizard. For example, you can print negative numeric values using a

distinct color. See “Defining field attributes” on page 145 for the attribute coding

rules.

When you specify an attribute, it must:

v Be the first item preceding the field name

v Precede the COL or POS values

HEADING attributes

You can not place attributes in the HEADING of field definitions. Instead, code the

attributes in the HEADING definitions of the REPORT statement. You place the

attributes before each literal.

Example:

HEADING AMOUNT (#(120% BOLD) ’CURRENT’ #(120%) ’AMOUNT’)

For rules about coding attributes, see “Defining field attributes” on page 145.

REPORT SEQUENCE and performance issues

The Drill Down reports are expected to be in the same sequence as the CONTROL

fields listed in the DRILL DOWN list.

DRILL DOWN RPT1 COMPANY RPT2 BRANCH RPT3 DETAIL

In the above example:

v RPT1 data must be in sequence by COMPANY

v RPT2 must be in sequence by COMPANY and BRANCH

v RPT3 must be in sequence by COMPANY, BRANCH, and some other fields in

the lower hierarchy.

In the example shown, it is important to realize that you are dealing with three

separate reports that are connected by means of a Drill Down document. Coding a

CONTROL statement considerations

144 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

|

|
|
|
|
|
|

|
|
|

|

|
|
|
|
|

|

|
|
|
|
|

|
|
|

|

|
|
|

|

|

|

|

|
|

|

|
|
|
|
|

|
|

SEQUENCE statement for each report would create three separate SORT requests,

one for each report. This can add a substantial overhead to your program.

You should avoid using the SEQUENCE statement whenever possible. Instead, use

the SORT statement in the program (or use an external SORT) to put your records

in the desired order before printing.

Defining field attributes

The default attributes are obtained from the Cascaded Style Sheets (CSS) located in

the SYS1.SFSYDOCS Migration Utility library.

You can override the global defaults for each document by coding &css names with

overriding values for each Drill Down document (see “Defining Drill Down

documents” on page 140).

You can override the defaults for each report by coding &css names with

overriding values for each report on the REPORT statement (see “Defining Drill

Down documents” on page 140).

You can specify attributes for each field listed on the MENU, TITLE, LINE, or

DISPLAY statements using the syntax below.

Attributes syntax

When you specify an attribute, it must be the first item preceding the field name

and preceding any COL or POS values.

Format 1

��

�

#

(

&attr

)

EQ

WHEN

&value

NE

NEGATIVE

GT

MINUS

LT

GE

LE

 ��

Parameters:

&attr Any attribute from the list of attributes (see “Available Attributes”

on page 146).

(Relational operator)

Can have one of the following values:

EQ Equal

NE Not equal

GT Greater than

LT Less than

GE Greater than or equal

LE Less than or equal

REPORT SEQUENCE and performance issues

Chapter 9. Creating HTML and spreadsheet files 145

|
|

|
|
|

|

|
|

|
|
|

|
|
|

|
|

|

|
|
|

|

|||

|
|

|

||
|

|
|
||
||
||
||
||
||

&value Value or literal to compare on. If the literal consists of more than

one word, you must enclose the whole literal in quotes.

 The length, used in comparison, is the length of field or the length

of &value, whichever is the shorter. Therefore, when &value is

shorter than the field, the field is compared partially (left side).

When the field is shorter, &value is compared partially (left side).

NEGATIVE Tests for “-” (negative value) at end of the field.

MINUS Same as NEGATIVE.

Example:

 TITLE 1 #(BOLD 110% BLUE) COL 10 ’Report: RPT1’

 LINE 1 #(RED WHEN MINUS) COL 1 AMOUNT1 +

 #(BOLD WHEN EQ .00) COL 20 AMOUNT2 +

 #(RED WHEN EQ ’JOHN SMITH’) NAME

Available Attributes

Migration Utility looks at the FSYFONTS table (the source is located in the

SYS1.SFSYEZTS) to assign a meaning to each attribute. If a specified attribute does

not exist in the table, a color attribute is assumed.

Be careful with the color attributes as they are not validated by Migration Utility.

The validation was not enforced intentionally, to provide an open system.

The FSYFONTS table can be updated at installation time to reflect your

environment.

Attributes

Code attributes as follows:

Background color

Code as BG-&color, where &color is any valid HTML color

(including a hexadecimal number preceded by a “#”).

 Examples:

BG-WHITE

BG-#ffcafff

Text color: Code any valid HTML color (including a hexadecimal number

preceded by a “#”).

 Examples:

RED

#adfffff

Font style: ITALIC

OBLIQUE

Font weight: NORMAL

BOLD

Font decoration:

BLINK

OVERLINE

UNDERLINE

LINE-THROUGH

Font family: ARIAL

HELVETICA

Attributes syntax

146 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

||
|

|
|
|
|

||

||

|

|
|
|
|

|

|
|
|

|
|

|
|

|
|

|
|
|

|

|
|

||
|

|

|
|

||
|

||
|

|
|
|
|
|

||
|

CG-TIMES

COURIER

’COURIER NEW’

SERIF

TIMES

Text align: CENTER

LEFT

RIGHT

Default fonts and CSS templates located in SYS1.SFSYDOCS

$B1 Default CSS

BODY {

font-family: verdana,arial,helvetica,serif;

font-weight: normal;

font-style: normal;

font-size: 12pt;

background-color: lightblue;

color: blue;

}

$B2 Default CSS

BODY {

font-family: courier;

font-weight: normal;

font-style: normal;

font-size: 10pt;

background-color: lightgray;

color: black;

}

$CP Default CSS

caption {

font-family: arial,helvetica,serif;

font-weight: normal;

font-style: normal;

font-size: 100%;

background-color: lightgray;

color: red;

}

$EM Default CSS

em {

font-family: courier;

font-weight: normal;

font-style: normal;

font-size: 100%;

text-align: center;

background-color: lightgray;

color: black;

}

$TB Default CSS

Available Attributes

Chapter 9. Creating HTML and spreadsheet files 147

|
|
|
|
|

||
|
|

|

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|

tb {

font-family: courier;

font-weight: normal;

font-style: normal;

font-size: 100%;

background-color: lightgray;

color: black;

text-align: left;

border-style: dotted;

padding: 1px;

width: 100%

}

$TD Default CSS

td {

font-family: courier;

font-weight: normal;

font-style: normal;

font-size: 100%;

text-align: left;

background-color: lightgray;

color: black;

}

$TH Default CSS

th {

font-family: courier;

font-weight: normal;

font-style: normal;

font-size: 100%;

background-color: lightgray;

color: blue;

}

$TR Default CSS

tr {

font-family: courier;

font-weight: normal;

font-style: normal;

font-size: 100%;

text-align: left;

background-color: lightgray;

color: blue;

}

Drill Down JCL requirements

The following sections describe the Drill Down JCL requirements at application

run time.

FJIDOC0—Cascading Style Sheet (CSS) library

This ddname must point to Migration Utility’s SYS1.SFSYDOCS PDS. This is an

input file. Migration Utility loads the default CSS templates from this PDS.

Available Attributes

148 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|

|
|

|

|
|

Example:

//FJIDOC0 DD DSN=SYS1.SFSYDOCS,DISP=SHR

ddname for the Drill Down documents

The &docname name that you specify on the REPORT <DOC> &docname...

statement is the ddname for the document file. It must be a PDS file with the

following attributes:

LRECL=4096

RECFM=VB

DSORG=PO

At end of job, all reports belonging to the &docname documents are combined into

a single PDS member and written to this PDS as &dsname(&docname). Make sure

that you allocate enough space to hold all reports.

This single file contains all reports in HTML format. Each HTML page is preceded

by a header record that specifies a Path ID (directory and file name).

Example:

MEMBER=rpt1/rpt2/i0000001.htm

The &docfile is recorded in EBCDIC. Download this file into a web server in text

format. Then use the JAVA program, fsyjpars.class, to parse the file into

browser-ready HTML documents. See “Running the Drill Down document

parser—fsyjpars” on page 152.

Note: If the //&docname DD is not coded in the JCL, Migration Utility ignores this

file.

ddname for the report files

When the “DYNALLOC=YES” EZPARAMS/EASYTRAN option is used, the

REPORT files are allocated dynamically at run time . To avoid allocation problems,

make sure that you specify a sufficient work space using the “WRKSPACE=”

EZPARAMS/EASYTRAN option.

When “DYNALLOC=NO” is used, a file for each report must be added to the JCL.

You must add 10 bytes to the record length of each Drill Down report. For

example, if a report LRECL is 133 (132+1 for CC), then the total length is (133+10)

= 143. Reports must be allocated to disk files as FBA files. Allocating temporary

files is preferred.

As previously stated, at end of job, all reports are combined into a single document

file and written out to the HFS (UNIX File System) on z/OS.

Using DYNALLOC=YES can save you unnecessary JCL overhead.

ddnames for the index/links validator program

FJWDOC0—Index cross-reference file

This file is created internally by the Drill Down logic when you

use the VALIDATE option of the “REPORT <DOC>...” statement.

The file is used to record, sort, and validate all links in the Drill

Down HTML documents. It ensures that all pages are properly

chained. The file must be allocated as follows:

FJIDOC0—Cascading Style Sheet (CSS) library

Chapter 9. Creating HTML and spreadsheet files 149

|

|

|

|
|
|

|
|
|

|
|
|

|
|

|

|

|
|
|
|

|
|

|

|
|
|
|

|
|
|
|
|

|
|

|

|

|
|
|
|
|
|

//FJWDOC0 DD DSN=&FJWDOC0,

// DISP=(OLD,CATLG,DELETE),

// SPACE=(CYL,(?,?),RLSE),

// DCB=(LRECL=4096,RECFM=VB,BLKSIZE=)

Note that DISP=(OLD...) is required.

SORTIN—Index file sort ddname

This ddname must be coded whenever FJWDOC0 is required. It

must point to the same DSN as the FJWDOC0 file. The file must be

allocated as follows:

//SORTIN DD DSN=&FJWDOC0,

// DISP=SHR

FJEDOC0—Error messages

Index and links validator messages are written to this file. This can

be a standard SYSOUT file. The LRECL=4096, RECFM=VBA,

DSORG=PS.

 Special note: When the FJWDOC0 file is required, before your job

step is run, define it using a IEFBR14 step as follows:

//IEFBR14 EXEC PGM=IEFBR14

//FJWDOC0 DD DSN=&FJWDOC0,

// DISP=(MOD,CATLG,DELETE),

// SPACE=(CYL,(5,5),RLSE),

// DCB=(LRECL=4096,RECFM=VB,BLKSIZE=)

This prevents JCL errors in the Drill Down step.

HFS (UNIX files) requirements

Note: To use this feature, the z/OS UNIX environment and the z/OS Internet

server must be activated on the z/OS system. A root directory on the UNIX

system must be established for each user. For more information, consult

your z/OS System administrator.

UNIX files are handled by the FSYUNIX1 Migration Utility program. This program

is dynamically loaded at end of job when combining the Drill Down reports for

distribution.

Code the ddnames shown below when you want to write HTML documents

directly into a HFS (UNIX Directory) on the z/OS UNIX system.

Note: UNIX is case-sensitive; that is, commands, directory and file names must by

typed exactly as shown.

Migration Utility checks the JCL for the FJUNIX0 ddname. If FJUNIX0 exists,

Migration Utility assumes that the HTML documents are being written directly

into the z/OS UNIX System.

The following ddnames are required when writing HTML documents directly into

the z/OS UNIX system.

Note: In the examples shown, assume that the root directory is

/u/migutil/fsoft01, and that &docfile=HTMLFIL1).

FJCONFG The UNIX system configuration file used to determine the code set

of each file type (ASCII or EBCDIC). See your UNIX system

administrator about the location of the httpd.conf file.

ddnames for the index/links validator program

150 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

|
|
|
|

|

|
|
|
|

|
|

|
|
|
|

|
|

|
|
|
|
|

|

|

|
|
|
|

|
|
|

|
|

|
|

|
|
|

|
|

|
|

||
|
|

Migration Utility uses the code set for the file types found in the

httpd.conf file. In this way, the HTML documents are always in

sync with the UNIX standards on your z/OS system.

 Example:

//FJCONFG DD PATHOPTS=(ORDONLY),

// PATH=’/u/vagen1/httpd.conf’

FJDMAP0 Log of directories and files created on the UNIX system. This is a

standard SYSOUT file.

FJUNIX0 The output directory on the z/OS UNIX System where files are to

be written. All HTML documents are written to this ddname. Note

that PATH= must point to your root directory.

 Example:

//FJUNIX0 DD PATHOPTS=(ORDONLY),

// PATH=’/u/migutil/fsoft01’

A subdirectory, &docfile, is created as coded on the REPORT

<DOC> &docfile... statement. All subsequent directories and HTML

documents are written in the created &docfile directory.

 The &docfile directory is created as a new directory. If the &docfile

directory already exists, the job is abnormally terminated.

 To reuse a directory, execute the BPXBATCH program before the

application step as follows:

//BPXBATCH EXEC PGM=BPXBATCH,

// PARM=’SH rm -r /u/migutil/fsoft01/htmlfil1’

Be extra careful. The above statements delete the specified

directory and all subdirectories within it. It will not give you a

second chance.

STDOUT The BPXBATCH program stdout file. This is an optional file. Point

PATH= to your own directory.

 Example:

//STDOUT DD PATH=’/u/migutil/fsoft01/fsyunix1.out’,

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),

// PATHMODE=(SIRWXU,SIXGRP)

STDERR The BPXBATCH program stderr file. This is an optional file. Point

PATH= to your own directory.

 Example:

//STDERR DD PATH=’/u/migutil/fsoft01/fsyunix1.err’,

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),

// PATHMODE=(SIRWXU,SIXGRP)

Tailoring the FSYFONTS table

To update the FSYFONTS table to support new attributes not included in the

default table:

1. Edit the FSYFONTS source located in SYS1.SFSYEZTS. Entries in the table are

coded by attribute category (FONT-STYLE, COLOR, BACKGROUND-COLOR,

FONT-STYLE, etc). Add the new entries to each category using the same syntax

as for the existing entries.

HFS (UNIX files) requirements

Chapter 9. Creating HTML and spreadsheet files 151

|
|
|

|

|
|

||
|

||
|
|

|

|
|

|
|
|

|
|

|
|

|
|

|
|
|

||
|

|

|
|
|

||
|

|

|
|
|

|
|

|
|

|
|
|
|

2. Assemble the FSYFONTS table using the JCASMFON job supplied in

SYS1.SFSYJCLS. Make sure that you link into a commonly used library

(preferably SYS1.SFSYLOAD).

Running the Drill Down document parser—fsyjpars

To instal the parser program, fsyjpars:

1. On your PC or a server, create a directory for the Drill Down reports.

Dos Windows example:

MD drilldown

2. Download from the mainframe (in BINARY format), SYS1.SFSYDOCS(fsyjpars)

to drilldown\fsyjpars.class

To parse a Drill Down file on your PC or a server do the following:

1. Make sure that Java VM is installed and running.

2. Download the HTML document file from the mainframe (in TEXT format) into

a directory (assume drilldown directory).

3. Switch to drilldown directory:

Dos Window example:

CD\drilldown

4. Enter on the command line:

Java fsyjpars &src &dest

Where:

&src Your downloaded Drill Down reports file.

&dest The target directory for HTML documents.
Example:

Java fsyjpars htmlfil1.txt htmlfil1

On completion, all HTML documents are created in the /drilldown/htmlfil1

directory. To view from your browser, enter the URL that points to the created

directory and click on the index.htm file.

Note: Depending on the platform, you can get sophisticated using scripts.

JCYUNIX0 (FSYUNIX0)—Drill Down utility for UNIX files

The FSYUNIX0 utility creates HTML documents on z/OS UNIX from a single PDS

HTML document file created by your application on z/OS.

The utility provides an alternative to creating HFS z/OS UNIX files directly from

your application program.

The utility runs as a standalone batch job. You can add it as a separate job step

after your application program, or run it as a separate job.

Use the JCYUNIX0 member, located in SYS1.SFSYJCLS, as a template (see exact

copy below).

Note: You must replace the PARM= with your own Directory Path.

Tailoring the FSYFONTS table

152 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

|
|
|

|

|

|

|

|

|
|

|

|

|
|

|

|

|

|

|

|

||

||

|

|

|
|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

//FSOFT01B JOB ,,NOTIFY=FSOFT01,

// CLASS=A,MSGCLASS=X,COND=(05,LT),REGION=0M

//*

//JOBLIB DD DSN=SYS1.SFSYLOAD,DISP=SHR

//***

//* COPYRIGHT (C) 1989-2005, FOUNDATION SOFTWARE, INC. *

//* ALL RIGHTS RESERVED - PROPERTY OF FOUNDATION SOFTWARE, INC. *

//* *

//* 5697-I89 (C) COPYRIGHT IBM CORP 2001, 2002, 2003, 2004, 2005. *

//* ALL RIGHTS RESERVED. LICENSED MATERIAL - PROPERTY OF IBM. *

//* USE, DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP. *

//* *

//* REV. 01/10/2005 WRITTEN BY: SRECKO LAZANJA *

//***

//* FSYUNIX0 - Create/load UNIX files from a single file that *

//* contains one or more directory path header records. *

//* *

//* Example of header record: *

//* *

//* MEMBER=homedir/report1.txt *

//* *

//* hfs/unix files are created to designated directory. *

//* The directory is provided via PARM= on the exec statement. *

//* *

//* example: *

//* PARAM=(’replace /u/migutil/fsoft01/htmlfl1’) *

//* PARAM=(’create /u/migutil/fsoft01/htmlfl1’) *

//* *

//* notes: use "replace" to replace the old directory if it *

//* exists, or create new directory if it does not. *

//* *

//* use "create" to create a new directory. Job will run *

//* only if the directory does not exist. *

//*---*

//FSYUNIX0 PROC SYSOUT=’*’,PARAM=

//*---*

//FSYUNIX0 EXEC PGM=FSYUNIX0,

// PARM=&PARAM

//SYSOUT DD SYSOUT=&SYSOUT

//*

//* Output log of created files

//FJDMAP0 DD SYSOUT=&SYSOUT

//*

//* Input flat VB file or a PDS member

//FJIDOC0 DD DSN=???????.INPUT.FILE,DISP=SHR

//*

//* UNIX config file (point to your own config)

//FJCONFG DD PATHOPTS=(ORDONLY),

// PATH=’/u/vagen1/httpd.conf’

JCYUNIX0 (FSYUNIX0)—Drill Down utility for UNIX files

Chapter 9. Creating HTML and spreadsheet files 153

|

JCMUDRL1—Drill Down reports program

Program JCMUDRL1 creates two Drill Down documents, HTMLFL1 and

HTMLFL2. It demonstrates how to create multiple Drill Down documents, Drill

Down reports, and CSV reports in the same program. The program is set to run in

Link and Go mode.

You can find a copy of JCMUDRL1 in the SYS1.SFSYJCL Migration Utility PDS

library.

//*

//* UNIX stdout file (point to your own stdout)

//STDOUT DD PATH=’/u/migutil/fsoft01/fsyunix0.out’,

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),

// PATHMODE=(SIRWXU,SIXGRP)

//*

//* UNIX stderr file (point to your own stderr)

//STDERR DD PATH=’/u/migutil/fsoft01/fsyunix0.err’,

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),

// PATHMODE=(SIRWXU,SIXGRP)

// PEND

//*

//STEP000 EXEC PROC=FSYUNIX0,

// PARAM=(’replace /u/migutil/fsoft01/htmlfl1’)

//

//FSOFT01V JOB ,,NOTIFY=FSOFT01,

// CLASS=A,MSGCLASS=X,COND=(5,LT),REGION=0M

//*

//JOBLIB DD DSN=SYS1.SFSYLOAD,

// DISP=SHR

//***

//* COPYRIGHT (C) 1989-2004, FOUNDATION SOFTWARE, INC. *

//* ALL RIGHTS RESERVED - PROPERTY OF FOUNDATION SOFTWARE, INC. *

//* *

//* 5697-I89 (C) COPYRIGHT IBM CORP 2001, 2002, 2003, 2004. *

//* ALL RIGHTS RESERVED. LICENSED MATERIAL - PROPERTY OF IBM. *

//* USE, DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP. *

//* *

//* REV. 01/20/2004 WRITTEN BY: SRECKO LAZANJA *

//***

//* JCMUDRL1 - COMPILE, LINK AND EXECUTE IN ONE STEP - INSTREAM PROC *

//* *

//* THIS PROC DEMONSTRATES HOW TO RUN DRILL DOWN REPORTS. *

//***

//FSPENGI PROC SYSOUT=’*’,

// FILEIN=SYS1.SFSYEZTS(TESTDRL1),

// SYSLIB1=SYS1.SFSYLOAD, PENGIEZT/MU LOADLIB

// PANDD=SYS1.SFSYEZTC, YOUR EZT MACROS

// SYSIN=SYS1.SFSYEZTS, INPUT EZT PROGRAM

// FJWDOC0=???????.TEMP.FJWDOC0.INDEX, TEMPORARY INDEX FILE

// HTMLFL1=???????.TEMP.HTMLFL1, OUTPUT HTMLFILE

// FJIDOC0=SYS1.SFSYDOCS, HTML TEMPLATES

// MEMBER=GO, PROGRAM NAME

// PARAM= POSSIBLE USER PARMS

Figure 2. JCMUDRL1—Drill Down reports program (Part 1 of 6)

JCMUDRL1—Drill Down reports program

154 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

|

|
|
|
|

|
|
|

|

//*---*

//IEFBR14 EXEC PGM=IEFBR14

//FJWDOC0 DD DSN=&FJWDOC0,

// DISP=(MOD,CATLG,DELETE),

// SPACE=(CYL,(5,5),RLSE),

// DCB=(LRECL=4096,RECFM=VB,BLKSIZE=)

//HTMLFL1 DD DSN=&HTMLFL1,

// DISP=(MOD,CATLG,DELETE),

// SPACE=(CYL,(20,30,64),RLSE),

// DCB=(LRECL=4096,RECFM=VB,BLKSIZE=,DSORG=PO)

//*---*

//FSYTPA00 EXEC PGM=FSYTPA00,PARM=&PARAM

//SYSLIB DD DSN=&SYSLIB1,

// DISP=SHR

//* PANDD MUST POINT TO YOUR OWN Easytrieve Plus MACROS.

//* (THIS IS AN OPTIONAL STATEMENT. COMMENT OUT IF NOT NEEDED)

//PANDD DD DSN=&PANDD,

// DISP=SHR

//SYSOUT DD SYSOUT=&SYSOUT

//SYSLIST DD SYSOUT=&SYSOUT

//SYSPRINT DD SYSOUT=&SYSOUT

//FJEDOC0 DD SYSOUT=&SYSOUT

//FJWDOC0 DD DSN=&FJWDOC0,

// DISP=(OLD,CATLG,DELETE),

// SPACE=(CYL,(5,5),RLSE),

// DCB=(LRECL=4096,RECFM=VB,BLKSIZE=)

//SORTIN DD DSN=&FJWDOC0,

// DISP=SHR

//HTMLFL1 DD DSN=&HTMLFL1,DISP=OLD

//FJIDOC0 DD DSN=&FJIDOC0,DISP=SHR

//FILEIN1 DD DSN=&FILEIN,

// DISP=SHR

//SORTWK01 DD UNIT=SYSDA,

// SPACE=(CYL,(20,50))

//SORTWK02 DD UNIT=SYSDA,

// SPACE=(CYL,(20,50))

//* INPUT PROGRAM IF FROM EXTERNAL PDS

//SYSIN DD DSN=&SYSIN(&MEMBER),

// DISP=SHR

// PEND

//*

//STEP010 EXEC PROC=FSPENGI

//FSYTPA00.SYSIN DD *

* EASYTRAN: PROCESS NOLIST,NOXREF,NOMAP

* EASYTRAN: DEBUG (LIST)

* EASYTRAN: PRINTER AUTOGEN

* END-EASYTRAN

FILE FILEIN1 DISK F (80)

COMP-DEP 1 7 A

COMPANY 1 2 A

BRANCH 4 4 A

ACCOUNT 9 8 A

NAME 18 15 A

FEE 34 07 N 2

SRVDATE 42 10 A

Figure 2. JCMUDRL1—Drill Down reports program (Part 2 of 6)

JCMUDRL1—Drill Down reports program

Chapter 9. Creating HTML and spreadsheet files 155

|

FILE TEMPFIL VIRTUAL

CO-NAME * 20 A HEADING (’COMPANY’ ’NAME’)

BR-NAME * 20 A HEADING (’BRANCH’ ’NAME’)

COMPANY * 2 A HEADING (’COMPANY’ ’NUMBER’)

BRANCH * 4 A HEADING (’BRANCH’ ’NUMBER’)

ACCOUNT * 8 A HEADING (’ACCOUNT’ ’NUMBER’)

NAME * 15 A HEADING (’DOCTOR’)

FEE * 07 N 2 HEADING (’SERVICE’ ’CHARGE’)

SRVDATE * 10 A HEADING (’SERVICE’ ’DATE’)

FILE COMPTAB TABLE INSTREAM

ARG 1 1 A

DESC 4 20 A

10 GENERAL HOSPITAL 1

20 GENERAL HOSPITAL 2

30 GENERAL HOSPITAL 3

40 GENERAL HOSPITAL 4

ENDTABLE

FILE DEPTTAB TABLE INSTREAM

ARG 1 7 A

DESC 9 20 A

10 0001 NEW JERSEY OFFICE

10 0002 NEW YORK OFFICE

10 0003 CONNECTICUT OFFICE

10 0004 PENNSYLVANIA OFFICE

20 0001 ARIZONA OFFICES

20 0002 CALIFORNIA OFFICES

20 0003 OHIO OFFICES

20 0004 FLORIDA HEALTH

40 0001 MEXICO OFFICES

40 0002 ARKANSAS OFFICES

40 0003 NEW MEXICO COMPLEX

40 0004 ALABAMA SPECIALISTS

ENDTABLE

WFEEDIFF W 5 P 2 HEADING (’CHARGE’ ’DIFFERENCE’)

WNOTRANS W 2 P 0 HEADING (’NUMBER’ ’TRANS’) VALUE 1

WFEEBASE W 5 P 2 HEADING (’AVERAGE’ ’CHARGE’) VALUE 450.00

WPRCNDIF S 3 P 2 HEADING (’PERCENT’ ’DIFFERENCE’).

JOB INPUT FILEIN1

 MOVE LIKE FILEIN1 TO TEMPFIL

 CO-NAME = ’UNKNOWN COMPANY’

 SEARCH COMPTAB WITH FILEIN1:COMPANY GIVING CO-NAME

 BR-NAME = ’UNKNOWN BRANCH’

 SEARCH DEPTTAB WITH FILEIN1:COMP-DEP GIVING BR-NAME

 PUT TEMPFIL

GOTO JOB

SORT TEMPFIL TO TEMPFIL USING (CO-NAME BR-NAME NAME SRVDATE)

JOB INPUT TEMPFIL

WFEEDIFF = (FEE - WFEEBASE)

WPRCNDIF = ((WFEEDIFF * 100) / WFEEBASE)

Figure 2. JCMUDRL1—Drill Down reports program (Part 3 of 6)

JCMUDRL1—Drill Down reports program

156 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

|

PRINT RPT1

PRINT RPT2

PRINT RPT3

PRINT RPT21

PRINT RPT22

PRINT RPT23

PRINT RPT31

PRINT RPT32

PRINT RPT33

REPORT <DOC> HTMLFL1 VALIDATE +

 $B1 (BLUE) +

 $TB (BLUE) +

 $TR (BLUE) +

 $TH (BLUE)

DRILL MENU 1 #(RED BOLD) +

 ’INCOME FROM SERVICES (TEXT)’ #GREEN SYSDATE

DRILL DOWN RPT1 CO-NAME RPT2 BR-NAME RPT3 DETAIL

DRILL MENU 2 #(RED BOLD) +

 ’INCOME FROM SERVICES (TABLE)’ #GREEN SYSDATE

DRILL DOWN RPT21 CO-NAME RPT22 BR-NAME RPT23 DETAIL

REPORT <DOC> HTMLFL2 VALIDATE +

 $B1 (BLUE) +

 $TB (BLUE) +

 $TR (BLUE) +

 $TH (BLUE)

DRILL MENU 3 #(RED BOLD) +

 ’INCOME FROM SERVICES (CSV)’ #GREEN SYSDATE

DRILL DOWN RPT31 CO-NAME RPT32 BR-NAME RPT33 DETAIL

------- DRILL DOWN REPORTS (TEXT FORMAT) -----------------------------

REPORT RPT1 SUMMARY NOADJUST DOCTYPE TEXT SKIP 0 LINESIZE 95 +

 SUMCTL (ALL DTLCOPY) PAGESIZE 0 TITLESKIP 1 LINKID ’Company’

CONTROL CO-NAME

TITLE 1 #(BOLD 110% BLUE) COL 10 ’Report: RPT1’ +

 #(BOLD 120% BLUE) COL 28 ’INCOME FROM SERVICES BY COMPANY’

LINE 1 CO-NAME +

 COMPANY +

 FEE +

 WFEEBASE +

 WNOTRANS +

 #(RED WHEN MINUS) WFEEDIFF

REPORT RPT2 SUMMARY NOADJUST DOCTYPE TEXT SKIP 0 LINESIZE 95 +

 SUMCTL (ALL DTLCOPY) PAGESIZE 0 TITLESKIP 1 LINKID ’Branch’

CONTROL BR-NAME

TITLE 1 #(BOLD 110% BLUE) COL 10 ’Report: RPT2’ +

 #(BOLD 120% BLUE) COL 28 ’INCOME FROM SERVICES BY BRANCH’

TITLE 3 ’COMPANY: ’ #(RED) COL 10 CO-NAME

LINE 1 BR-NAME +

 BRANCH +

 FEE +

Figure 2. JCMUDRL1—Drill Down reports program (Part 4 of 6)

JCMUDRL1—Drill Down reports program

Chapter 9. Creating HTML and spreadsheet files 157

|

WFEEBASE +

 WNOTRANS +

 #(RED WHEN MINUS) WFEEDIFF

REPORT RPT3 NOADJUST DTLCTL (EVERY) PAGESIZE 40 LINESIZE 115 +

 DOCTYPE TEXT TITLESKIP 1 LINKID ’Detail’

CONTROL DETAIL

TITLE 1 #(BOLD 110% BLUE) COL 10 ’Report: RPT3’ +

 #(BOLD 120% BLUE) COL 28 ’SERVICE FEE TRANSACTIONS - DETAIL’

TITLE 3 ’COMPANY: ’ #(RED) CO-NAME ’ BRANCH: ’ #(RED) BR-NAME

LINE 1 BRANCH +

 #(RED WHEN ’JOHN DOE 2’) NAME +

 ACCOUNT +

 SRVDATE +

 FEE +

 WFEEBASE +

 #(RED WHEN MINUS) WFEEDIFF +

 #(RED WHEN MINUS) WPRCNDIF

------- DRILL DOWN REPORTS (TABLE FORMAT) ----------------------------

REPORT RPT21 SUMMARY NOADJUST DOCTYPE TABLE SKIP 0 LINESIZE 95 +

 SUMCTL (ALL DTLCOPY) PAGESIZE 0 TITLESKIP 1

CONTROL CO-NAME

TITLE 1 #(BOLD 120% BLUE) COL 24 ’INCOME FROM SERVICES BY COMPANY’

TITLE 2 ’Report: RPT21’

LINE 1 CO-NAME +

 COMPANY +

 FEE +

 WFEEBASE +

 WNOTRANS +

 #(RED WHEN MINUS) WFEEDIFF

REPORT RPT22 SUMMARY NOADJUST DOCTYPE TABLE SKIP 0 LINESIZE 95 +

 SUMCTL (ALL DTLCOPY) PAGESIZE 0 TITLESKIP 1

CONTROL BR-NAME

TITLE 1 #(BOLD 120% BLUE) COL 24 ’INCOME FROM SERVICES BY BRANCH’

TITLE 2 ’Report: RPT22’

TITLE 3 ’COMPANY: ’ #(RED) COL 10 CO-NAME

LINE 1 BR-NAME +

 BRANCH +

 FEE +

 WFEEBASE +

 WNOTRANS +

 #(RED WHEN MINUS) WFEEDIFF

REPORT RPT23 NOADJUST DTLCTL (EVERY) PAGESIZE 40 LINESIZE 115 +

 DOCTYPE TABLE TITLESKIP 1 LINKID NO

CONTROL DETAIL

TITLE 1 #(BOLD 120% BLUE) COL 24 ’SERVICE FEE TRANSACTIONS - DETAIL’

TITLE 2 ’Report: RPT23’

TITLE 3 ’COMPANY: ’ #(RED) CO-NAME ’ BRANCH: ’ #(RED) BR-NAME

LINE 1 BRANCH +

 NAME +

 ACCOUNT +

 SRVDATE +

Figure 2. JCMUDRL1—Drill Down reports program (Part 5 of 6)

JCMUDRL1—Drill Down reports program

158 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

|

FEE +

 WFEEBASE +

 #(RED WHEN MINUS) WFEEDIFF +

 #(RED WHEN MINUS) WPRCNDIF

------- DRILL DOWN REPORTS (TABLE/CSV FORMAT) ------------------------

REPORT RPT31 SUMMARY NOADJUST DOCTYPE TABLE SKIP 0 LINESIZE 95 +

 SUMCTL (ALL DTLCOPY) PAGESIZE 0 TITLESKIP 1

CONTROL CO-NAME

TITLE 1 #(BOLD 120% BLUE) COL 24 ’INCOME FROM SERVICES BY COMPANY’

TITLE 2 ’Report: RPT31’

LINE 1 CO-NAME +

 COMPANY +

 FEE +

 WFEEBASE +

 WNOTRANS +

 #(RED WHEN MINUS) WFEEDIFF

REPORT RPT32 SUMMARY NOADJUST DOCTYPE TABLE SKIP 0 LINESIZE 95 +

 SUMCTL (ALL DTLCOPY) PAGESIZE 0 TITLESKIP 1

CONTROL BR-NAME

TITLE 1 #(BOLD 120% BLUE) COL 24 ’INCOME FROM SERVICES BY BRANCH’

TITLE 2 ’Report: RPT32’

TITLE 3 ’COMPANY: ’ #(RED) COL 10 CO-NAME

LINE 1 BR-NAME +

 BRANCH +

 FEE +

 WFEEBASE +

 WNOTRANS +

 #(RED WHEN MINUS) WFEEDIFF

REPORT RPT33 NOADJUST DTLCTL (EVERY) PAGESIZE 40 LINESIZE 115 +

 DOCTYPE CSV SEP=(’,’) TITLESKIP 1 SPACE 1

CONTROL DETAIL

TITLE 1 COL 24 ’SERVICE FEE TRANSACTIONS - DETAIL’

TITLE 2 ’ ’

TITLE 3 ’COMPANY: ’ CO-NAME ’ BRANCH: ’ BR-NAME

LINE 1 BRANCH +

 NAME +

 ACCOUNT +

 SRVDATE +

 FEE +

 WFEEBASE +

 WFEEDIFF +

 WPRCNDIF

----------------------- END OF PROGRAM -------------------------------

Figure 2. JCMUDRL1—Drill Down reports program (Part 6 of 6)

JCMUDRL1—Drill Down reports program

Chapter 9. Creating HTML and spreadsheet files 159

|

Figure 3. Generated Drill Down reports (HTMLFL1 document only) (Part 1 of 2)

JCMUDRL1—Drill Down reports program

160 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

|

JCMUDRL2—Creates a CSV file and a CSV report

Program JCMUDRL2 creates a CSV file and a CSV report. It demonstrates how to

create plain CSV files and reports (without using the Drill Down syntax).

The program is set to run in Link and Go mode.

Figure 3. Generated Drill Down reports (HTMLFL1 document only) (Part 2 of 2)

JCMUDRL2—Creates a CSV file and a CSV report

Chapter 9. Creating HTML and spreadsheet files 161

|

|
|

|

You can find a copy of JCMUDRL1 in the SYS1.SFSYJCL Migration Utility PDS

library.

//FSOFT01V JOB ,,NOTIFY=FSOFT01,

// CLASS=A,MSGCLASS=X,COND=(5,LT),REGION=0M

//*

//JOBLIB DD DSN=SYS1.SFSYLOAD,

// DISP=SHR

//***

//* COPYRIGHT (C) 1989-2004, FOUNDATION SOFTWARE, INC. *

//* ALL RIGHTS RESERVED - PROPERTY OF FOUNDATION SOFTWARE, INC. *

//* *

//* 5697-I89 (C) COPYRIGHT IBM CORP 2001, 2002, 2003, 2004. *

//* ALL RIGHTS RESERVED. LICENSED MATERIAL - PROPERTY OF IBM. *

//* USE, DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP. *

//* *

//* REV. 01/20/2004 WRITTEN BY: SRECKO LAZANJA *

//***

//* JCMUDRL2 - COMPILE, LINK AND EXECUTE IN ONE STEP - INSTREAM PROC *

//* *

//* THIS PROC DEMONS HOW TO CREATE CHARACTER SEPARATED VALUE FILES. *

//***

//FSPENGI PROC SYSOUT=’*’,

// FILEIN=SYS1.SFSYEZTS(TESTDRL1),

// SYSLIB1=SYS1.SFSYLOAD, PENGIEZT/MU LOADLIB

// PANDD=SYS1.SFSYEZTC, YOUR EZT MACROS

// SYSIN=SYS1.SFSYEZTS, INPUT EZT PROGRAM

// CSVFIL1=???????.TEST.CSVFIL1, CSV FILE 1

// CSVRPT1=???????.TEST.CSVRPT1, CSV FILE 2

// MEMBER=GO, PROGRAM NAME

// PARAM= POSSIBLE USER PARMS

//*---*

//IEFBR14 EXEC PGM=IEFBR14

//CSVRPT1 DD DSN=&CSVRPT1,

// DISP=(MOD,DELETE,DELETE),

// SPACE=(CYL,(1,5),RLSE),

// DCB=(LRECL=133,RECFM=FB,BLKSIZE=)

//CSVFIL1 DD DSN=&CSVFIL1,

// DISP=(MOD,DELETE,DELETE),

// SPACE=(CYL,(2,5),RLSE),

// DCB=(LRECL=120,RECFM=VB,BLKSIZE=,DSORG=PO)

//*---*

//FSYTPA00 EXEC PGM=FSYTPA00,PARM=&PARAM

//SYSLIB DD DSN=&SYSLIB1,

// DISP=SHR

//* PANDD MUST POINT TO YOUR OWN Easytrieve Plus MACROS.

//* (THIS IS AN OPTIONAL STATEMENT. COMMENT OUT IF NOT NEEDED)

//PANDD DD DSN=&PANDD,

// DISP=SHR

//SYSOUT DD SYSOUT=&SYSOUT

//SYSLIST DD SYSOUT=&SYSOUT

//SYSPRINT DD SYSOUT=&SYSOUT

//CSVFIL1 DD DSN=&CSVFIL1,

Figure 4. JCMUDRL2—Creates a CSV file and a CSV report (Part 1 of 3)

JCMUDRL2—Creates a CSV file and a CSV report

162 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

|
|
|

|

// DISP=(NEW,CATLG,DELETE),

// SPACE=(CYL,(5,5),RLSE),

// DCB=(LRECL=100,RECFM=FB,BLKSIZE=)

//CSVRPT1 DD DSN=&CSVRPT1,

// DISP=(NEW,CATLG,DELETE),

// SPACE=(CYL,(5,5),RLSE),

// DCB=(LRECL=133,RECFM=FBA,BLKSIZE=)

//FILEIN1 DD DSN=&FILEIN,

// DISP=SHR

//* INPUT PROGRAM IF FROM EXTERNAL PDS

//SYSIN DD DSN=&SYSIN(&MEMBER),

// DISP=SHR

// PEND

//*

//GENCSV EXEC PROC=FSPENGI

//FSYTPA00.SYSIN DD *

* EASYTRAN: PROCESS LIST,XREF,MAP

* ESYTRAN: DEBUG (NOLIST)

*EASYTRAN: DEBUG (COBOL BLIST LKED)

* EASYTRAN: PRINTER AUTOGEN

* END-EASYTRAN

FILE CSVRPT1 PRINTER

FILE CSVFIL1 F (100)

FILE FILEIN1 DISK F (80)

COMP-DEP 1 7 A

COMPANY 1 2 A HEADING (’COMPANY’ ’NUMBER’)

BRANCH 4 4 A HEADING (’BRANCH’ ’NUMBER’)

ACCOUNT 9 8 A HEADING (’ACCOUNT’ ’NUMBER’)

NAME 18 15 A HEADING (’DOCTOR’)

FEE 34 07 N 2 HEADING (’SERVICE’ ’CHARGE’)

SRVDATE 42 10 A HEADING (’SERVICE’ ’DATE’)

FILE COMPTAB TABLE INSTREAM

ARG 1 1 A

DESC 4 20 A

10 GENERAL HOSPITAL 1

20 GENERAL HOSPITAL 2

30 GENERAL HOSPITAL 3

40 GENERAL HOSPITAL 4

ENDTABLE

FILE DEPTTAB TABLE INSTREAM

ARG 1 7 A

DESC 9 20 A

10 0001 NEW JERSEY OFFICE

10 0002 NEW YORK OFFICE

10 0003 CONNECTICUT OFFICE

10 0004 PENNSYLVANIA OFFICE

20 0001 ARIZONA OFFICES

20 0002 CALIFORNIA OFFICES

20 0003 OHIO OFFICES

20 0004 FLORIDA HEALTH

40 0001 MEXICO OFFICES

40 0002 ARKANSAS OFFICES

40 0003 NEW MEXICO COMPLEX

40 0004 ALABAMA SPECIALISTS

ENDTABLE

Figure 4. JCMUDRL2—Creates a CSV file and a CSV report (Part 2 of 3)

JCMUDRL2—Creates a CSV file and a CSV report

Chapter 9. Creating HTML and spreadsheet files 163

|

The output CSVFIL1 file would be formatted as follows:

COMPANY, BRANCH, NAME, ACCOUNT, FEE, BON-BASE, %BONUS, BONUS,

10, 0001, JOHN DOE 1 , 10000011, 500.00, 500.00, .10, .00,

10, 0001, JOHN DOE 1 , 10000011, 510.00, 500.00, .10, 1.00,

WBONUS W 4 P 2 HEADING (’BONUS’)

WBONBAS S 4 P 2 HEADING (’BONUS’ ’BASE’) VALUE 500.00

WPBONUS S 4 P 2 HEADING (’%BONUS’) VALUE .10

WCO-NAME W 20 A HEADING (’COMPANY’ ’NAME’)

WBR-NAME W 20 A HEADING (’BRANCH’ ’NAME’)

WHFLAG W 1 A VALUE ’Y’

JOB INPUT FILEIN1

WCO-NAME = ’UNKNOWN COMPANY’

SEARCH COMPTAB WITH COMPANY GIVING WCO-NAME

WBR-NAME = ’UNKNOWN BRANCH’

SEARCH DEPTTAB WITH COMP-DEP GIVING WBR-NAME

WBONUS = ((FEE - WBONBAS) * WPBONUS)

IF WHFLAG = ’Y’

 DISPLAY CSVFIL1 +

 SEP=(’, ’) +

 ’COMPANY’ +

 ’BRANCH’ +

 ’NAME’ +

 ’ACCOUNT’ +

 ’FEE’ +

 ’BON-BASE’ +

 ’%BONUS’ +

 ’BONUS’

 WHFLAG = ’N’

END-IF

DISPLAY CSVFIL1 +

 SEP=(’, ’) +

 COMPANY +

 BRANCH +

 NAME +

 ACCOUNT +

 FEE +

 WBONBAS +

 WPBONUS +

 WBONUS

PRINT RPT1

REPORT RPT1 PRINTER CSVRPT1 NOADJUST DTLCTL(EVERY) +

 PAGESIZE 0 SEP=(’,’) TITLESKIP 1 NOSPREAD

SEQUENCE WCO-NAME WBR-NAME NAME

CONTROL FINAL

TITLE 1 COL 28 ’SERVICE FEES BY DOCTOR’

TITLE 2 ’ ’

TITLE 3 ’COMPANY: ’ WCO-NAME ’ BRANCH: ’ WBR-NAME

LINE 1 COMPANY +

 BRANCH +

 NAME +

 ACCOUNT +

 FEE +

 WBONBAS +

 WPBONUS +

 WBONUS

----------------------- END OF PROGRAM -------------------------------

Figure 4. JCMUDRL2—Creates a CSV file and a CSV report (Part 3 of 3)

JCMUDRL2—Creates a CSV file and a CSV report

164 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

|

|
|
|

10, 0001, JOHN DOE 1 , 10000011, 520.00, 500.00, .10, 2.00,

10, 0001, JOHN DOE 1 , 10000011, 400.00, 500.00, .10, -10.00,

10, 0001, JOHN DOE 2 , 10000012, 510.10, 500.00, .10, 1.01,

10, 0001, JOHN DOE 3 , 10000013, 520.15, 500.00, .10, 2.01,

10, 0001, JOHN DOE 4 , 10000014, 150.15, 500.00, .10, -34.98,

The output CSVRPT1 file would be formatted as follows (only first 80 columns

shown):

 1/01/05 SERVICE FEES BY DOCTOR

COMPANY: GENERAL HOSPITAL 1 BRANCH: CONNECTICUT OFFICE

COMPANY , BRANCH , , ACCOUNT , SERVICE ,

NUMBER , NUMBER , DOCTOR , NUMBER , CHARGE ,

 10 , 0003 , JOHN3 DOE 1 , 20000011 , 500.00 ,

 10 , 0003 , JOHN3 DOE 2 , 30000012 , 510.10 ,

 10 , 0003 , JOHN3 DOE 3 , 30000013 , 520.15 ,

 10 , 0003 , JOHN3 DOE 4 , 30000014 , 150.15 ,

 10 , 0003 , JOHN3 DOE 4 , 30000014 , 150.15 ,

 10 , 0003 , JOHN3 DOE 4 , 30000014 , 150.15 ,

 10 , 0003 , JOHN3 DOE 4 , 30000014 , 150.15 ,

JCMUDRLU—Drill Down reports and UNIX environment

The JCMUDRLU program creates two Drill Down documents, HTMLFL1 and

HTMLFL2. It demonstrates how to create multiple Drill Down documents, Drill

Down reports and CSV reports in the same program.

The output Drill Down reports are written to HFS (UNIX files) on z/OS and

standard PDS for download. The program is set to run in Link and Go mode.

You can find a copy of JCMUDRL1 in the SYS1.SFSYJCL Migration Utility PDS

library.

The JCMUDRLU program is the same as the JCMUDRL1 example except for the

HFS (UNIX files) part of the JCL.

//FSOFT01V JOB ,,NOTIFY=FSOFT01,

// CLASS=A,MSGCLASS=X,COND=(5,LT),REGION=0M

//*

//JOBLIB DD DSN=SYS1.SFSYLOAD,

// DISP=SHR

//***

//* COPYRIGHT (C) 1989-2005, FOUNDATION SOFTWARE, INC. *

//* ALL RIGHTS RESERVED - PROPERTY OF FOUNDATION SOFTWARE, INC. *

//* *

//* 5697-I89 (C) COPYRIGHT IBM CORP 2001, 2002, 2003, 2004, 2005. *

//* ALL RIGHTS RESERVED. LICENSED MATERIAL - PROPERTY OF IBM. *

//* USE, DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP. *

//* *

//* REV. 01/10/2005 WRITTEN BY: SRECKO LAZANJA *

//***

//* JCMUDRLU - COMPILE, LINK AND EXECUTE IN ONE STEP - INSTREAM PROC *

//* *

//* NOTES: EZT PROGRAM IS AT THE BOTTOM OF THIS PROC *

//* *

Figure 5. JCMUDRLU—Drill Down reports and UNIX environment (Part 1 of 7)

JCMUDRL2—Creates a CSV file and a CSV report

Chapter 9. Creating HTML and spreadsheet files 165

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|

|
|

|
|
|

//* This job demonstrates how to write Drill Down Reports directly to *

//* MVS UNIX (HFS) directory. Drill Down Reports can then be accessed *

//* by the WEB Browsers directly via z/OS server. *

//* *

//***

//FSPENGI PROC SYSOUT=’*’,

// FILEIN=SYS1.SFSYEZTS(TESTDRL1),

// SYSLIB1=SYS1.SFSYLOAD, PENGIEZT/MU LOADLIB

// PANDD=SYS1.SFSYEZTC, YOUR EZT MACROS

// SYSIN=SYS1.SFSYEZTS, INPUT EZT PROGRAM

// FJWDOC0=???????.TEMP.FJWDOC0.INDEX, TEMPORARY INDEX FILE

// HTMLFL1=???????.TEMP.HTMLFL1, OUTPUT HTMLFILE

// HTMLFL2=???????.TEMP.HTMLFL2, OUTPUT HTMLFILE

// FJIDOC0=SYS1.SFSYDOCS, HTML TEMPLATES

// MEMBER=GO, PROGRAM NAME

// PARAM= POSSIBLE USER PARMS

//*---*

//* prepare files before run. *

//*---*

//IEFBR14 EXEC PGM=IEFBR14

//* temporary work file to hold index/anchor information

//FJWDOC0 DD DSN=&FJWDOC0,

// DISP=(MOD,CATLG,DELETE),

// SPACE=(CYL,(5,5),RLSE),

// DCB=(LRECL=4096,RECFM=VB,BLKSIZE=)

//* output PDS for drilldown report named HTMLFL1.

//HTMLFL1 DD DSN=&HTMLFL1,

// DISP=(MOD,CATLG,DELETE),

// SPACE=(CYL,(20,30,64),RLSE),

// DCB=(LRECL=4096,RECFM=VB,BLKSIZE=,DSORG=PO)

//* output PDS for drilldown report named HTMLFL2.

//HTMLFL2 DD DSN=&HTMLFL2,

// DISP=(MOD,CATLG,DELETE),

// SPACE=(CYL,(20,30,64),RLSE),

// DCB=(LRECL=4096,RECFM=VB,BLKSIZE=,DSORG=PO)

//*---*

//FSYTPA00 EXEC PGM=FSYTPA00,PARM=&PARAM

//SYSLIB DD DSN=&SYSLIB1,

// DISP=SHR

//* PANDD MUST POINT TO YOUR OWN Easytrieve Plus MACROS.

//* (THIS IS AN OPTIONAL STATEMENT. COMMENT OUT IF NOT NEEDED)

//PANDD DD DSN=&PANDD,

// DISP=SHR

//SYSOUT DD SYSOUT=&SYSOUT

//SYSLIST DD SYSOUT=&SYSOUT

//SYSPRINT DD SYSOUT=&SYSOUT

//*

//*---*

//* files needed by drilldown application program. *

//*---*

//*

//* index validation error listing (used only for VALIDATE option)

//FJEDOC0 DD SYSOUT=&SYSOUT

//*

//* log of directories and files created on unix system

//FJDMAP0 DD SYSOUT=&SYSOUT

//*

//* temporary work file to hold index/anchor information

Figure 5. JCMUDRLU—Drill Down reports and UNIX environment (Part 2 of 7)

JCMUDRLU—Drill Down reports and UNIX environment

166 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

|

|

//FJWDOC0 DD DSN=&FJWDOC0,

// DISP=(OLD,CATLG,DELETE),

// SPACE=(CYL,(5,5),RLSE),

// DCB=(LRECL=4096,RECFM=VB,BLKSIZE=)

//*

//* sort work file. must point to the same file as FJWDOC0 ABOVE.

//SORTIN DD DSN=&FJWDOC0,

// DISP=SHR

//*

//* output PDS for drilldown report named HTMLFL1.

//HTMLFL1 DD DSN=&HTMLFL1,DISP=OLD

//*

//* output PDS for drilldown report named HTMLFL2.

//HTMLFL2 DD DSN=&HTMLFL2,DISP=OLD

//*

//* input pds where MU html templates are located (sfsydocs)

//FJIDOC0 DD DSN=&FJIDOC0,DISP=SHR

//*

//FILEIN1 DD DSN=&FILEIN,

// DISP=SHR

//*

//* INPUT PROGRAM (MU drilldown program) IF FROM EXTERNAL PDS

//SYSIN DD DSN=&SYSIN(&MEMBER),

// DISP=SHR

//*

//* UNIX system configuration file used to determine code ascii/ebcdic

//* Consult with UNIX system administrator for httpd.conf location.

//FJCONFG DD PATHOPTS=(ORDONLY),

// PATH=’/u/vagen1/httpd.conf’

//*

//* Output directory on UNIX. All reports are written to this ddname.

//* Point PATH= to your own directory.

//FJUNIX0 DD PATHOPTS=(ORDONLY),

// PATH=’/u/migutil/fsoft01’

//*

//* BPXBATCH Program stdout file. This is an optional file.

//* Point PATH= to your own directory.

//STDOUT DD PATH=’/u/migutil/fsoft01/fsyunix1.out’,

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),

// PATHMODE=(SIRWXU,SIXGRP)

//*

//* BPXBATCH Program stderr file. This is an optional file.

//* Point PATH= to your own directory.

//STDERR DD PATH=’/u/migutil/fsoft01/fsyunix1.err’,

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),

// PATHMODE=(SIRWXU,SIXGRP)

//*

//* sort work files are needed for sorting index records in addition

//* to potential sorts(s) in MU program.

//SORTWK01 DD UNIT=SYSDA,

// SPACE=(CYL,(20,50))

//*

//SORTWK02 DD UNIT=SYSDA,

// SPACE=(CYL,(20,50))

//*

// PEND

//*

//STEP010 EXEC PROC=FSPENGI

//FSYTPA00.SYSIN DD *

* EASYTRAN: PROCESS NOLIST,NOXREF,NOMAP

* EASYTRAN: DEBUG (LIST)

* EASYTRAN: PRINTER AUTOGEN

* END-EASYTRAN

Figure 5. JCMUDRLU—Drill Down reports and UNIX environment (Part 3 of 7)

JCMUDRLU—Drill Down reports and UNIX environment

Chapter 9. Creating HTML and spreadsheet files 167

FILE FILEIN1 DISK F (80)

COMP-DEP 1 7 A

COMPANY 1 2 A

BRANCH 4 4 A

ACCOUNT 9 8 A

NAME 18 15 A

FEE 34 07 N 2

SRVDATE 42 10 A

FILE TEMPFIL VIRTUAL

CO-NAME * 20 A HEADING (’COMPANY’ ’NAME’)

BR-NAME * 20 A HEADING (’BRANCH’ ’NAME’)

COMPANY * 2 A HEADING (’COMPANY’ ’NUMBER’)

BRANCH * 4 A HEADING (’BRANCH’ ’NUMBER’)

ACCOUNT * 8 A HEADING (’ACCOUNT’ ’NUMBER’)

NAME * 15 A HEADING (’DOCTOR’)

FEE * 07 N 2 HEADING (’SERVICE’ ’CHARGE’)

SRVDATE * 10 A HEADING (’SERVICE’ ’DATE’)

FILE COMPTAB TABLE INSTREAM

ARG 1 1 A

DESC 4 20 A

10 GENERAL HOSPITAL 1

20 GENERAL HOSPITAL 2

30 GENERAL HOSPITAL 3

40 GENERAL HOSPITAL 4

ENDTABLE

FILE DEPTTAB TABLE INSTREAM

ARG 1 7 A

DESC 9 20 A

10 0001 NEW JERSEY OFFICE

10 0002 NEW YORK OFFICE

10 0003 CONNECTICUT OFFICE

10 0004 PENNSYLVANIA OFFICE

20 0001 ARIZONA OFFICES

20 0002 CALIFORNIA OFFICES

20 0003 OHIO OFFICES

20 0004 FLORIDA HEALTH

40 0001 MEXICO OFFICES

40 0002 ARKANSAS OFFICES

40 0003 NEW MEXICO COMPLEX

40 0004 ALABAMA SPECIALISTS

ENDTABLE

WFEEDIFF W 5 P 2 HEADING (’CHARGE’ ’DIFFERENCE’)

WNOTRANS W 2 P 0 HEADING (’NUMBER’ ’TRANS’) VALUE 1

WFEEBASE W 5 P 2 HEADING (’AVERAGE’ ’CHARGE’) VALUE 450.00

WPRCNDIF S 3 P 2 HEADING (’PERCENT’ ’DIFFERENCE’).

JOB INPUT FILEIN1

 MOVE LIKE FILEIN1 TO TEMPFIL

 CO-NAME = ’UNKNOWN COMPANY’

 SEARCH COMPTAB WITH FILEIN1:COMPANY GIVING CO-NAME

 BR-NAME = ’UNKNOWN BRANCH’

 SEARCH DEPTTAB WITH FILEIN1:COMP-DEP GIVING BR-NAME

 PUT TEMPFIL

GOTO JOB

SORT TEMPFIL TO TEMPFIL USING (CO-NAME BR-NAME NAME SRVDATE)

Figure 5. JCMUDRLU—Drill Down reports and UNIX environment (Part 4 of 7)

JCMUDRLU—Drill Down reports and UNIX environment

168 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

|

JOB INPUT TEMPFIL

WFEEDIFF = (FEE - WFEEBASE)

WPRCNDIF = ((WFEEDIFF * 100) / WFEEBASE)

PRINT RPT1

PRINT RPT2

PRINT RPT3

PRINT RPT21

PRINT RPT22

PRINT RPT23

PRINT RPT31

PRINT RPT32

PRINT RPT33

REPORT <DOC> HTMLFL1 VALIDATE +

 $B1 (BLUE) +

 $TB (BLUE) +

 $TR (BLUE) +

 $TH (BLUE)

DRILL MENU 1 #(RED BOLD) +

 ’INCOME FROM SERVICES (TEXT)’ #GREEN SYSDATE

DRILL DOWN RPT1 CO-NAME RPT2 BR-NAME RPT3 DETAIL

DRILL MENU 2 #(RED BOLD) +

 ’INCOME FROM SERVICES (TABLE)’ #GREEN SYSDATE

DRILL DOWN RPT21 CO-NAME RPT22 BR-NAME RPT23 DETAIL

REPORT <DOC> HTMLFL2 VALIDATE +

 $B1 (BLUE) +

 $TB (BLUE) +

 $TR (BLUE) +

 $TH (BLUE)

DRILL MENU 3 #(RED BOLD) +

 ’INCOME FROM SERVICES (CSV)’ #GREEN SYSDATE

DRILL DOWN RPT31 CO-NAME RPT32 BR-NAME RPT33 DETAIL

------- DRILL DOWN REPORTS (TEXT FORMAT) -----------------------------

REPORT RPT1 SUMMARY NOADJUST DOCTYPE TEXT SKIP 0 LINESIZE 95 +

 SUMCTL (ALL DTLCOPY) PAGESIZE 0 TITLESKIP 1 LINKID ’Company’

CONTROL CO-NAME

TITLE 1 #(BOLD 110% BLUE) COL 10 ’Report: RPT1’ +

 #(BOLD 120% BLUE) COL 28 ’INCOME FROM SERVICES BY COMPANY’

LINE 1 CO-NAME +

 COMPANY +

 FEE +

 WFEEBASE +

 WNOTRANS +

 #(RED WHEN MINUS) WFEEDIFF

REPORT RPT2 SUMMARY NOADJUST DOCTYPE TEXT SKIP 0 LINESIZE 95 +

 SUMCTL (ALL DTLCOPY) PAGESIZE 0 TITLESKIP 1 LINKID ’Branch’

CONTROL BR-NAME

TITLE 1 #(BOLD 110% BLUE) COL 10 ’Report: RPT2’ +

 #(BOLD 120% BLUE) COL 28 ’INCOME FROM SERVICES BY BRANCH’

TITLE 3 ’COMPANY: ’ #(RED) COL 10 CO-NAME

LINE 1 BR-NAME +

 BRANCH +

 FEE +

 WFEEBASE +

Figure 5. JCMUDRLU—Drill Down reports and UNIX environment (Part 5 of 7)

JCMUDRLU—Drill Down reports and UNIX environment

Chapter 9. Creating HTML and spreadsheet files 169

|

|

WNOTRANS +

 #(RED WHEN MINUS) WFEEDIFF

REPORT RPT3 NOADJUST DTLCTL (EVERY) PAGESIZE 40 LINESIZE 115 +

 DOCTYPE TEXT TITLESKIP 1 LINKID ’Detail’

CONTROL DETAIL

TITLE 1 #(BOLD 110% BLUE) COL 10 ’Report: RPT3’ +

 #(BOLD 120% BLUE) COL 28 ’SERVICE FEE TRANSACTIONS - DETAIL’

TITLE 3 ’COMPANY: ’ #(RED) CO-NAME ’ BRANCH: ’ #(RED) BR-NAME

LINE 1 BRANCH +

 #(RED WHEN ’JOHN DOE 2’) NAME +

 ACCOUNT +

 SRVDATE +

 FEE +

 WFEEBASE +

 #(RED WHEN MINUS) WFEEDIFF +

 #(RED WHEN MINUS) WPRCNDIF

------- DRILL DOWN REPORTS (TABLE FORMAT) ----------------------------

REPORT RPT21 SUMMARY NOADJUST DOCTYPE TABLE SKIP 0 LINESIZE 95 +

 SUMCTL (ALL DTLCOPY) PAGESIZE 0 TITLESKIP 1

CONTROL CO-NAME

TITLE 1 #(BOLD 120% BLUE) COL 24 ’INCOME FROM SERVICES BY COMPANY’

TITLE 2 ’Report: RPT21’

LINE 1 CO-NAME +

 COMPANY +

 FEE +

 WFEEBASE +

 WNOTRANS +

 #(RED WHEN MINUS) WFEEDIFF

REPORT RPT22 SUMMARY NOADJUST DOCTYPE TABLE SKIP 0 LINESIZE 95 +

 SUMCTL (ALL DTLCOPY) PAGESIZE 0 TITLESKIP 1

CONTROL BR-NAME

TITLE 1 #(BOLD 120% BLUE) COL 24 ’INCOME FROM SERVICES BY BRANCH’

TITLE 2 ’Report: RPT22’

TITLE 3 ’COMPANY: ’ #(RED) COL 10 CO-NAME

LINE 1 BR-NAME +

 BRANCH +

 FEE +

 WFEEBASE +

 WNOTRANS +

 #(RED WHEN MINUS) WFEEDIFF

REPORT RPT23 NOADJUST DTLCTL (EVERY) PAGESIZE 40 LINESIZE 115 +

 DOCTYPE TABLE TITLESKIP 1 LINKID NO

CONTROL DETAIL

TITLE 1 #(BOLD 120% BLUE) COL 24 ’SERVICE FEE TRANSACTIONS - DETAIL’

TITLE 2 ’Report: RPT23’

TITLE 3 ’COMPANY: ’ #(RED) CO-NAME ’ BRANCH: ’ #(RED) BR-NAME

LINE 1 BRANCH +

 NAME +

 ACCOUNT +

 SRVDATE +

 FEE +

 WFEEBASE +

 #(RED WHEN MINUS) WFEEDIFF +

 #(RED WHEN MINUS) WPRCNDIF

------- DRILL DOWN REPORTS (TABLE/CSV FORMAT) ------------------------

Figure 5. JCMUDRLU—Drill Down reports and UNIX environment (Part 6 of 7)

JCMUDRLU—Drill Down reports and UNIX environment

170 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

|

REPORT RPT31 SUMMARY NOADJUST DOCTYPE TABLE SKIP 0 LINESIZE 95 +

 SUMCTL (ALL DTLCOPY) PAGESIZE 0 TITLESKIP 1

CONTROL CO-NAME

TITLE 1 #(BOLD 120% BLUE) COL 24 ’INCOME FROM SERVICES BY COMPANY’

TITLE 2 ’Report: RPT31’

LINE 1 CO-NAME +

 COMPANY +

 FEE +

 WFEEBASE +

 WNOTRANS +

 #(RED WHEN MINUS) WFEEDIFF

REPORT RPT32 SUMMARY NOADJUST DOCTYPE TABLE SKIP 0 LINESIZE 95 +

 SUMCTL (ALL DTLCOPY) PAGESIZE 0 TITLESKIP 1

CONTROL BR-NAME

TITLE 1 #(BOLD 120% BLUE) COL 24 ’INCOME FROM SERVICES BY BRANCH’

TITLE 2 ’Report: RPT32’

TITLE 3 ’COMPANY: ’ #(RED) COL 10 CO-NAME

LINE 1 BR-NAME +

 BRANCH +

 FEE +

 WFEEBASE +

 WNOTRANS +

 #(RED WHEN MINUS) WFEEDIFF

REPORT RPT33 NOADJUST DTLCTL (EVERY) PAGESIZE 0 LINESIZE 115 +

 DOCTYPE CSV SEP=(’,’) TITLESKIP 1 SPACE 1

CONTROL DETAIL

TITLE 1 COL 24 ’SERVICE FEE TRANSACTIONS - DETAIL’

TITLE 2 ’ ’

TITLE 3 ’COMPANY: ’ CO-NAME ’ BRANCH: ’ BR-NAME

LINE 1 BRANCH +

 NAME +

 ACCOUNT +

 SRVDATE +

 FEE +

 WFEEBASE +

 WFEEDIFF +

 WPRCNDIF

----------------------- END OF PROGRAM -------------------------------

Figure 5. JCMUDRLU—Drill Down reports and UNIX environment (Part 7 of 7)

Chapter 9. Creating HTML and spreadsheet files 171

172 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Chapter 10. User exits

End of translating macro exit

Optionally, users who are familiar with PEngiCCL macro language can write their

own PEngiCCL macro to extract information collected by the translator. The macro

is invoked by the translator at End of Job before exiting the main logic when no

errors exist.

The Implementing process is as follows:

1. Make a copy of EASYUXIT macro located in SYS1.SFSYCCLM library.

2. Change the macro prototype name ″EASYUXIT″ in your new macro to reflect

the new name.

3. Make the necessary changes. Note that the EASYUXIT macro inherits relevant

variable queues from the main translator macro, therefore, all variables with an

″I:″ in the definition located in EASYUXIT macro can be accessed.

4. Add USERXIT=&MACNAME parameter to your EZPARAMS (EASYTRAN)

options, where &MACNAME is the name of your new macro.

5. Make sure that you have FJSYSP0 ddname defined in your JCL (first step). You

can direct the output to SYSOUT or to a real file. LRECL is FB 80 characters

long.

Alternatively, you can use EASYUXIT macro without changes. This macro

produces a list of files with related information and a list of Easytrieve macros

detected in the program. FJSYSP0 is required in the first step of the translator JCL.

Note: Writing PEngiCCL macros is not suitable for all users. In-depth knowledge

of PEngiCCL macro language is required.

File I/O Exits

The FILE EXIT statement allows you to:

v Generate a MODIFY EXIT when the MODIFY option is specified on the file EXIT

statement. With this exit, I/O is performed by the generated COBOL. Your exit

is invoked to prescreen or modify the input and output records.

v Generate a non-MODIFY EXIT when the MODIFY option is not specified on the

file EXIT statement. Your exit program is responsible for the file I/O.

The EXIT can be specified for VSAM and sequential files only. Easytrieve Plus does

not support EXIT for DLI/IMS, IDMS, and DB2.

All exits must be compiled as REUSABLE and linked with 31-bit or ANY

addressing mode. The run mode can be 24-bit or 31-bit run mode.

Exit calling conventions

The exits are invoked via a COBOL call using the standard IBM linkage

conventions. That is, register 1 (R1) points to a list of parameter pointers upon

entry into your program.

In this example:

 CALL PROGRAM1 USING FIELD1 FIELD2 FIELD3

© Copyright IBM Corp. 2002, 2005 173

R1 would point to:

 DC A(FIELD1)

 DC A(FIELD2)

 DC A(FIELD3)

The high order bit of the last pointer would contain X’80’.

To receive these parameters in your COBOL exit, you must code a 01 level in the

LINKAGE SECTION for each parameter, and establish addressability to each on

the PROCEDURE statement. For example, to access the above 3 parameters you

would code:

 LINKAGE SECTION.

 01 FIELD1 PIC ...

 01 FIELD2 PIC ...

 01 FIELD3 PIC ...

 PROCEDURE DIVISION USING FIELD1 FIELD2 FIELD3.

From a BAL program, each pointer can be accessed off R1. For example:

 L R4,0(R1) Location of FIELD1

 L R5,4(R1) Location of FIELD2

 L R6,8(R1) Location of FIELD3

MODIFY Exits

When MODIFY is specified, your exit program receives two standard parameters,

followed by the optional USING parameters.

v The first parameter points to the file record. This record contains file input

record for input operations, and the output record for output operations.

v The second parameter points to a WORKAREA.

v Additional parameters as specified by the USING option (if any).

The WORKAREA is required for MODIFY option. The file record is the input file

record. You must move this file record to the WORKAREA in your exit program.

Then you can modify the WORKAREA as needed. Upon return from your exit, the

WORKAREA is moved to the file record and made available to your generated

COBOL program.

Use the supplied sample FSYTMXIT program in the SYS1.SFSYEZTS Migration

Utility library as a skeleton for creating more complex programs. To use the

supplied FSYTMXIT, you would code the following file statement in your

Easytrieve Plus program:

 FILE FILE01 DISK F (80) +

 EXIT (FSYTMXIT MODIFY) WORKAREA 80

Non-MODIFY Exits

When MODIFY is not specified, your exit program receives two standard

parameters, followed by the optional USING parameters.

v The first parameter points to the file record. You must populate this file record

with valid information that maps the layout defined in your Easytrieve Plus

program.

v The second parameter points to the request code. This code is a 4-byte binary

integer.

The input values are:

User exits

174 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

0 first entry and request for read/write

8 file close request

These are received by the exit program.

The output values are:

8 end of file reached

These must be set by the exit program.

v Additional parameters as specified by the USING option (if any).

Use the sample FSYTIXIT and FSYTOXIT programs supplied in the

SYS1.SFSYEZTS Migration Utility library as skeletons for creating your own exits.

For example, to use the supplied FSYTIXIT, you would code the following file

statement in your Easytrieve Plus program:

 FILE FILE01 DISK F (80) EXIT (FSYTIXIT)

If you are reading one or more files in the exit, you may need a flag to control

your file I/O activities, such as a first time switch or file closed switch. For this

reason, your program must be linked as a reusable program.

All open files must be closed either when you reach EOF or when a request code

of 8 is received.

CBLCNVRT macro

Use this macro to convert COBOL copybooks to Easytrieve Plus macros in two

ways:

v A standalone job

v Coding CBLCNVRT

Running a standalone job to do the conversion.

1. Tailor and use JCEZCNV0 JCL located in SYS1.SFSYJCLS to do so.

JCEZCNV0 uses sample EASYCNV0 file located in SYS1.SFSYEZTS.

2. Follow directions in the EASYCNV0 for updating rules.

3. Note that the %PUNCH is always needed as coded in the EASYCNV0 file.

4. Use standard Easytrieve Syntax to add entries to the EASYTCNV0 file.

The Easytrieve Plus macros are punched to FJSYSP2 file in IEBUPDAT format.

5. Last, run a standard IBM IEBUPDAT job to add macros to a PDS.

Your generated Easytrieve Plus macros are now ready for use.

User exits

Chapter 10. User exits 175

Example

This is an example of EASYCNV0 entries:

%PUNCH EASYT (FJSYSP2). * PUNCH OPTION AND DDNAME (DO NOT CHANGE)

%CBLCNVRT COBCOPYA. * PUNCH COPY BOOK 1

Coding CBLCNVRT in Easytrieve Plus programs.

You can code CBLCNVRT to pull in COBOL copybooks to be used in the program.

To do so, follow the standard Easytrieve Plus syntax for coding macros. Code

%CBLCNVRT macro followed by the copybook name and CBLCNVRT macro

options.

This format of CBLCNVRT is unique to Migration Utility. It is not supported by

Easytrieve Plus.

�� %CBLCNVRT &NAME LOC(&LOC) PFX(&PFX) SFX(&SFX) HEADING(&H) ��

Parameters

&NAME

The name of the COBOL copybook to be used.

&PFX Optional Fields Prefix, the default is ().

&SFX Optional Fields Suffix , the default is ().

&LOC Location: (*) or (W) or (S)

&H Field Title Option:

() Produces field titles found in the copybook.

(*) Produces commented out field titles found in the copybook.

Refer to “Generating COBOL COPY statements” on page 178 for the copybook

format requirements.

Field titles are extracted from the copybook " *: HDR (’&TITLE’,...) record.

The use of the %CBLCNVRT macro for VSAM Indexed file requires the use of the

KEY &KEY option on the FILE statement.

Example

FILE FILEIN F (80)

%CBLCNVRT COBCOPYA LOC(*) PFX().

%CBLCNVRT COBCOPYA LOC(W) PFX(W-).

FILE FILEIN2 VS (KEY VCOMPANY)

%CBLCNVRT COBCOPYA LOC(*) PFX(V).

CBLCNVRT macro

176 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

EZTCNVRT macro

The EZTCNVRT macro can be used to convert Easytrieve Plus macros to COBOL

copy books.

EZTCNVRT is unique to Migration Utility. It is not supported by Easytrieve Plus.

A standalone job must be run to do the conversion:

1. Tailor and use JCEZCNV1 JCL located in SYS1.SFSYJCLS.

2. Make sure that COBOLCOPY=NO is coded in the EZPARAMS option.

3. Provide COPYCHAR=’$S..’ in EZPARAMS for translating special characters.

4. JCEZCNV1 uses sample EASYCNV1 file located in SYS1.SFSYEZTS.

5. Follow directions in the EASYCNV1 for updating rules.

Note that the %PUNCH is always needed as coded in the EASYCNV1 file.

6. Use standard Easytrieve Syntax to add entries to the EASYTCNV1 file.

7. The COBOL copybooks are punched to FJSYSP2 file in IEBUPDAT format.

8. Last, run a standard IBM IEBUPDAT job to add copybooks to a PDS.

Your generated COBOL copybooks are now ready for use.

�� %EZTCNVRT &NAME

�

&PARM(&V)

 . ��

Parameters

&NAME

The Easytrieve Plus macro name.

&PARM

Macro parameter (maximum of 8).

&V Value for each keyword/parameter.

Example

This is an example of EASYCNV1 Entries:

%PUNCH COBOL (FJSYSP2). * PUNCH OPTION AND DDNAME (DO NOT CHANGE)

%EZTCNVRT EZTCOPYA LOC(*). * PUNCH COPY BOOK 1

%EZTCNVRT $ZTCOPYB LOC(*). * PUNCH COPY BOOK 2

Special considerations

Punch one copybook at a time to avoid complications with duplicate field names.

If the generated copybook is used as working storage, use the punch option

%PUNCH COBOL (FJSYSP2) VALUES(YES) to force default field values to be

generated in the copybook.

When the EZTCNVRT macro is used, all embedded (nested) macros are ignored.

The copybook is punched for the specified level-01 macro only.

EZTCNVRT macro

Chapter 10. User exits 177

All field names in the generated copybook are prefixed by the ″:AA:″ special

characters. In this way, the REPLACING option of COBOL COPY statement can be

used to assign unique field names when a copybook is used multiple times in the

same program.

While the generated copybooks can be used in Native COBOL, the primary

purpose of EZTCNVRT is to create COBOL copybooks that can be used in the

translated programs. Thus, after generating all copybooks, you can translate

Easytrieve Plus programs with COPYBOOK=YES option for a cleaner and leaner

outcome.

Be aware, all field names are reduced to 16 characters or less to accommodate

prefixing. You can enhance field names by providing the TRANSLATE WORDS

and TRANSLATE FIELDS tables (see EZPARAMS Options). However, if you do so,

the translate tables must be subsequently used for every program being translated

to preserve naming conventions. The file with FJNAMES ddname in your

JCEZCNV1 JCL will contain a table of reduced field names after the first pass. You

can tailor this table and use it for translating field names (as TRANSLATE FIELDS

table).

The generated copybook name is the macro name from which it was created.

COBOL does not allow special characters in the copybook name and Easytrieve

Plus does. Use COPYCHAR=’....’ of EZPARAMS to replace the bad characters.

Generating COBOL COPY statements

By default, Migration Utility generates hard-coded file and working storage

layouts in the generated programs. With minor effort, it is possible to generate

COBOL COPY statements for your Easytrieve Plus macros and then direct

Migration Utility to punch out COBOL COPY statements instead of the hard-coded

layouts.

To do this:

1. Make an inventory of all Easytrieve Plus macros that qualify to be a copybook.

In general, these would be those macros that fully define a record or working

storage area. Macros that contain FILE statement along with record layout also

qualify. Note that COBOL copybooks pulled in using CBLCNVRT are

automatically considered.

2. Make a table of macro names similar to the EZTABLE0 table located in

SYS1.SFSYEZTS.

3. Generate COBOL copybooks out of Easytrieve Plus macros using the

EZTCNVRT macro (refer to “EZTCNVRT macro” on page 177).

4. Prepare EASYTRAN/EZPARAMS options:

COPYBOOK=YES YES for generating copybooks

COPYNTAB=&NAME The table that contains the list of Easytrieve macros

COPYCHAR=’$S’ Character replacement for fixing bad copybook names

NCOPIES=nnn nnn is the maximum number of copybooks in a single program

5. Concatenate the PDS that contains your version of EZTABLE0 to FJCPYLB

ddname (the first step of the translator JCL).

6. Concatenate the PDS where your COBOL copybooks are located to FJCPYLB in

the second step (PEngiBAT step) of the translator JCL, and to SYSLIB of the

COBOL Compiler step.

Example

EZTCNVRT macro

178 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

This is an example of EZTABLE0 table:

* EASYTRIEVE PLUS MACROS THAT QUALIFY FOR COBOL COPY BOOKS. *

* *

* THIS TABLE IS USED BY THE EASYTRIEVE PLUS TRANSLATOR WHEN *

* OPTION COPYNTAB=EZTABLE0 IS CODED IN EZPARAMS. *

* *

* FILE LAYOUT: *

* *

* CODE EZT MACRO NAMES FOLLOWED BY: *

* --------------------------------- *

* A. PREFIX KEYWORD *

* B. SUFFIX KEYWORD *

* C. SUB LIST OF ALLOWED ADDITIONAL KEYWORDS ON MACRO STATEMENT *

* D. ’*’ MUST BE PLACED BEFORE COMMENTS *

* *

* RULES: *

* 1. PREFIX IS OPTIONAL *

* PREFIX CAN BE CODED ALONE *

* *

* 2. SUFFIX IS OPTIONAL *

* IF SUFFIX IS NEEDED, AND THERE IS NO PREFIX, A FAKE PREFIX *

* KEYWORD MUST BE SUPPLIED. YOU CAN USE ANY FAKE KEYWORD. *

* *

* 3. SUB LIST OF ALLOWED KEYWORDS IS OPTIONAL *

* +IF SUB LIST IS CODED, THE TRANSLATOR WILL GENERATE A COPY *

* STATEMENT ONLY WHEN MACRO IS CODED WITH THE KEYWORDS IN THE *

* SUB LIST. THE PREFIX AND SUFFIX ARE AUTOMATICALLY INCLUDED. *

* +IF SUB LIST IS NOT CODED, THE TRANSLATOR WILL GENERATE A COPY *

* STATEMENT UNCONDITIONALLY. *

* *

* NOTES: *

* EASYTRIEVE PLUS MACROS THAT QUALIFY FOR COPY BOOKS CAN CONTAIN *

* RECORD OR WORK AREA DEFINITIONS. MACROS WITH RECORD DEFINITIONS *

* CAN CONTAIN FILE STATEMENTS TOO. *

* *

* THE PREFIX AND SUFFIX PARAMETERS ARE USUALLY USED TO MODIFY *

* NAMES SO THAT MULTIPLE LAYOUTS CAN BE GENERATED FROM A SINGLE *

* MACRO. LOOK AT YOUR MACRO PROTOTYPE STATEMENTS TO SEE IF THE *

* PREFIX AND SUFFIX PARAMETERS ARE USED. *

* *

* MACROS CAN BE CODED TO USE OTHER KEYWORD PARAMETERS BUT SUCH *

* PARAMETERS SHOULD NOT BE MODIFYING FIELD NAMES. CODE SUCH EXTRA *

* PARAMETERS AS A SUB LIST OF ALLOWED KEYWORDS. THE SUB LIST CAN BE *

* CONTINUED ON MULTIPLE LINES. USE STANDARD EASYTRIEVE PLUS RULES. *

COBCOPYA PFX * DEMO FILE COBOL COPYA BOOK USED BY %CBLCNVRT

COBCOPYB PFX * DEMO FILE COBOL COPYB BOOK USED BY %CBLCNVRT

EZTCOPYA PFX SFX (LOC) * DEMO FILE EZT COPYA FORMAT MACRO

EZTCOPYB PFX SFX (LOC) * DEMO FILE EZT COPYB FORMAT MACRO

----------- ADD ADDITIONAL MACROS AFTER THE LAST LINE ---------------

Note: It is critical to code the correct prefix, suffix and the allowed keywords for

each macro you specify. In this example, the prefix keyword is PFX, the

suffix keyword is SFX and the additional parameter allowed on EZTCOPYA

and EZTCOPYB macros is LOC.

Multiple COPY statements are generated when the layout consists of more

than one macro.

Migration Utility has a complex algorithm for determining if a macro

qualifies for a COPY statement. A hard-coded layout is forced whenever a

listed macro in EZTABLE0 is used in a manner that would cause errors. For

Generating COBOL COPY statements

Chapter 10. User exits 179

example: a layout is composed of hard-coded fields and a macro that

qualifies for a copybook, or a redefine of a field defined in a macro that

qualifies for a copybook, is coded outside of the macro scope (that is,

Activity Section).

Special considerations

If you run with COPYBOOK=NO and COPYNTAB= is supplied, the generator will

take advantage of the table information and generate a prefix for copy books that

are used multiple times in the same program, if such copybook is not coded with a

different prefix. Thus duplicate field names would be prefixed rather than made

unique via a sequence number. Therefore, it is a good practice to build a table of

all macros that qualify to be copybooks, even if COPYBOOK=NO is in effect.

System information

Migration Utility files

The following files are Migration Utility product PDS files:

Data set name Description

SYS1.SFSYCCLC Translator COPY commands

SYS1.SFSYCCLM Translator macros

SYS1.SFSYEZTC Sample Easytrieve Plus macros and COBOL copybooks

SYS1.SFSYEZTS Sample programs and translator parameter files

SYS1.SFSYFJCC Translator preprocessed (byte code) macros

SYS1.SFSYJCLS Sample JCL distributed with the product

SYS1.SFSYLOAD Translator load modules

Called by the translated COBOL programs

The following COBOL modules are located in SYS1.SFSYLOAD Library:

Name Description

FSABECOB Batch programs ABEND message handler

FSDATEZ0 Date services main interface program

FSDATSR2 Date services program for base 360

FSDATSRV Date services program for base 365

FSDIMAGE Unstring an edited number

FSMOVE00 Move Long Common module

FSPLOT00 Plot program (called by some batch programs)

FSSPACE0 Common modules used by Easytrieve Plus translated programs

FSSQLERR SQL error display module

FSYCNV01 Automated conversion restart module

FSYCNV02 Automated conversion error logger

FSYCNV03 JCL Merge program (not used)

FSYCNV20 Parallel test compare program

FSYCNV50 Easytrieve Plus discovery utility

FSYCNV55 Easytrieve Plus source analyzer

FSYDB200 Call Attachment Interface (CAF) sample program

FSYDB250 Call Attachment Interface (CAF) module

FSYDLIE0 DLI error display module

FSYTIXIT I/O EXIT sample exit module (input files)

FSYTMXIT I/O EXIT sample module (MODIFY option)

FSYTOXIT I/O exit sample module (output files)

FSYXIT00 Parallel test sample compare exit program/

The following BAL modules are located in SYS1.SFSYLOAD Library:

Generating COBOL COPY statements

180 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Name Description

FSDYN* Dynamic I/O modules

FSDYNCNV Convert ASCII to EBCDIC and EBCDIC to ASCII

FSFILL00 Pad a field with a pad characters

FSLOPER0 Perform Logical Operation, AND, OR, XOR

FSLOPER1 Perform Bit Testing for ON condition

FSMVSCN0 Console I/O module

FSSHIFTL Shift a field 4 bits left

FSSHIFTR Shift a field 4 bits right

FSSQLER2 Dynamic SQL error handler

FSVLNT03 Get File Record Length after and I/O

FSVLNT90 Get File Information Block (FIB) at Open time

FSYATTCH Task initiator

FSYDB202 Load DSNHFECP CAF Module

FSYDDCPY Dynamic allocator interface

FSYDRIL0 Drill Down sub module

FSYDRIL1 Drill Down sub module

FSYDRIL2 Drill Down sub module

FSYEZEND DEBUG options decoder

FSYFONTS Drill Down fonts

FSYGDBD0 IMS/DLI SSA string generator

FSYGJOB0 Get Job Information from JOB Scheduler

FSYGPCB0 Resolves DLI/IMS PCB

FSYGTDCB Obtains file DCB information

FSYGTSO0 DCLQUE0 macro TSO user resolver

FSYLOAD0 Program loader

FSYMIG00 Parallel test JCL builder main program

FSYMIG05 Parallel test run time initiator

FSYMIG10 Parallel test run time driver

FSYMIGLD Program loader

FSYMIGS0 Parallel test JCL builder submodule

FSYMIGS1 Parallel test JCL builder submodule

FSYMIGS2 Parallel test JCL builder submodule

FSYSQLIO Dynamic SQL interface

FSYUNIX0 Utility for Unix files

FSYUNIX1 Utility sub module for Unix files

FSYVLN90 Get file information block (FIB) at open time. This module replaces

FSVLNT90.

A number of other modules that may be needed at run time are included in the

SYS1.SFSYLOAD library.

Run-time requirements

If Migration Utility is run with IOMODE=DYNAM, SYS1.SFSYLOAD library is

required at run time.

If the translated COBOL program is compiled with the ″DYNAM″ option, then

SYS1.SFSYLOAD must be concatenated to your JOBLIB or STEPLIB ddnames.

If the translated COBOL program is compiled with the ″NODYNAM″ option, then

SYS1.SFSYLOAD is not needed at run time.

The FSABECOB program is invoked by the generated batch programs whenever

there is a file I/O error. It can be also invoked for other reasons that require an

abnormal program termination.

System information

Chapter 10. User exits 181

||

||

||
||
||

||

||
||
||

The FSABECOB prints a description of the detected error on the FJSYABE file if

supplied in the JCL. The error description is usually based on the file status

returned by the COBOL I/O routines. The description printed is as per

FILE-STATUS code.

Summary of ddnames

To run Migration Utility, the following files must be defined in the JCL:

ddname Description

FJBIND0 This file contains DB2/SQL BIND parameters skeleton. The record

length of this file is 80 bytes. Refer to SQLMODE= parameter in

EZPARAMS.

FJCCLLB Precompiled Translator CCL1 Macros SYS1.SFSYFJCC

FJCPYLB PDS which contains copybooks. The user can also concatenate the

PDS which contains the user written COBOL copybooks or other

(copy) members (including Easytrieve Plus macros).

FJMACLB PDS which contains Translator CCL1 standard macros. You can

also concatenate the PDS which contains the user written CCL1

macros (including CCL1 macros for Easytrieve Plus).

FJNAMES Refer to DDFNAME= option in EZPARAMS. This file contains a

table of reduced field names. The record length of this file is 80

bytes.

FJSYS01 This is a temporary sequential work file. The record length of this

file is 94 bytes long. The block size can be coded in the JCL via the

DCB statement.

FJSYSER Translator error file. This file contains a summary of errors and

MNOTEs issued by the translator during the translating process.

The LRECL of this file is 89, DSORG=PS.

FJSYSIN Input file which contains the EZPARAMS File, normally

SYS1.SFSYEZTS

FJSYSJC Optional Output Sequential JCL file. This file is generated by the

translator when JCL=YES is specified. The record length of this file

is 80 bytes. The block size can be coded in the JCL via the DCB

statement.

FJSYSP0 The output statistics record normally contains a list of files and

macros found in Easytrieve Plus program.

FJSYSPH The output generated program source code. This can be a

sequential data set or a PDS library. The record length of this file is

80 bytes long. The block size can be coded in the JCL via the DCB

statement. The created program can be passed on to the COBOL

compiler in the same job stream or permanently saved.

FJSYSPW PASSWORD file SYS1.SFSYCCLM(PASSWORD)

SYSIN File which contains an Easytrieve program. This can be a PDS or a

sequential file. The record length of this file must be 80 bytes long.

The block size cannot exceed 32,767 bytes.

SYSLIST Translator diagnostics and generated program listing. This is a

standard print file. For more information about this file, see the

″LIST=″ parameter in the Translator Options described in this

section.

System information

182 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Translator CCL1 preprocessor options

COPTION parameters

Migration Utility CCL1 preprocessor options can be overridden using the

COPTION statement in two ways:

1. COPTION statement can be placed at the beginning of the EZPARAMS file.

One or more COPTION statements can be supplied with multiple keywords on

each statement depending on the requirements.

Example:

 COPTION LIST=CND,LINES=60

2. COPTION statement can be coded in the PARM= parameter of an EXEC

statement for MVS/ESA™ operating systems. Note that the maximum number

of characters that can be used in a PARM= statement on an MVS/ESA

operating system is 54.

Example:

//PENGI EXEC PGM=FSCCOBOL,

// PARM=’(COPTION(LIST=CND,LINES=60)’

The parameters are coded with “=” (keyword parameters) followed by the value.

The following options can be used in the COPTION statement:

Keyword Description

BUFSIZE=2048 The size of the internal CCL1 work buffers. The maximum is

32,767.

 The work buffers are used by CCL1 to collect and decode all macro

parameters. PEngiCCL allocates seven internal work buffers for the

size specified in BUFSIZE. Note that the size should not be

overestimated to avoid excessive use of storage.

ERRLIMT=32 Error limit count as NNN. Controls the maximum number of CCL1

detected printable errors. This parameter is designed to simplify

error debugging by limiting the number of errors printed in a

single preprocessing.

 When the number of errors exceeds the ERRLIMT, all subsequent

errors are suppressed.

LINES=56 Number of lines per page for preprocessed program

 The LINES parameter value should not exceed the physical page

capacity of 66 lines.

LIST=NO The preprocessor list option. Can have these values:

YES A listing of the preprocessed program and all generated

code is produced, including internally generated functions.

This type of listing is also referred to as the expanded

listing.

NO A listing of the preprocessed program is not produced.

CND Only a listing of the input program source is produced.

This type of listing is also referred to as a condensed

listing.

FUN A listing of the input program and the internally generated

functions is produced. This type of listing is also referred

to as a condensed/function listing.

The following positional parameters can be coded on the COPTION statement:

System information

Chapter 10. User exits 183

|

LISTM Print processed Easytrieve Plus macros.

NOLISTM Do not print processed Easytrieve Plus macros.

EZLREF Generate cross-reference sequence number of the Easytrieve Plus

program source in the generated COBOL columns 1–6. Thus

number is used for debugging and relates COBOL statements back

to the Easytrieve Plus program.

System information

184 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

||

||

||
|
|
|

Chapter 11. Installation and Migration Utility options

For step by step Easytrieve source conversion refer to Chapter 3, “Conversion

guidelines,” on page 13.

Installation

Migration Utility is installed using SMP/E. Refer to the Program Directory

(GI10-8469) for installation instructions.

Migration Utility works on the OS/390® and z/OS operating systems.

Upon installation, you must perform tailoring as described in the following

sections:

v Report Statement default options (see page 192)

v Migration Utility translator options (see page 194)

v Tailoring default PROC for the One-Step driver program (see page 186)

v Activating Call Attachment Facility (CAF) for DB2 users (see page 188)

v Generating Dynamic SQL I/O module (FSYSQLIO) (see page 191)

Users outside of the United States should adjust the following EZPARAMS

parameters. (For the meaning of each parameter, refer to “Migration Utility

translator options” on page 194.)

NAMETAB= Users of non-English alphabets should add the special characters in

their alphabet to the NAMETAB= string to avoid the invalid

COBOL name messages.

CURRENCY= Check currency for proper sign.

DECIMAL= Check DECIMAL characters usage.

 In addition, check the EASYDTAB macro for date format and other REPORT

statement defaults.

Migrating from Version 1

The EZPARAMS default options changed in Version 2 Release 1. If you are

migrating from an older version of Migration Utility, you must make sure that

your existing programs are not impacted by these changes. These parameters will

not affect your program unless it is recompiled.

To take advantage of these new options, you must create two EZPARAMS files,

one for the old release and one for the new release. The recommended way is to

make a new EZPARAMS member for running the new way, in which case you can

change the member name for FJSYSIN in the FSCCL1 step in #EZTPROC and

#CNVPROC. The following parameters have changed or have been added. (For the

meaning of each parameter, refer to “Migration Utility translator options” on page

194.)

ABEND=’CON_ABEND00(FSABEC16)’

The old default was FSABECOB. This option impacts how your program

© Copyright IBM Corp. 2002, 2005 185

|

abnormally terminates on I/O errors. FSABECOB causes an S0C7 program

check, FSABEC16 abends with RETURN-CODE 16, which is compatible

with Easytrieve Plus.

COPYNTAB=

The old default was EZTABLE0. It was removed as most companies do not

use COBOL copy books. If you are using COBOL copy books, change this

parameter to include the same table from your previous release.

DOWHILE=PERFORM

The default was INLINE. PERFORM has fewer compatibility issues, but

functionally it is the same as the INLINE option.

IOCODE=EASYT

The default was NATIVE. This may affect how file I/O return codes are

interpreted in your program.

IOMODE=DYNAM

The default was NODYNAM. DYNAM impacts your I/O routines and is

more compatible with how Easytrieve Plus works.

MOVENUM=EASYT

This is a new option. The previous versions of Migration Utility always

defaulted to NATIVE option. Change this option to NATIVE for programs

that had been translated with version 1.

OCCURS1=0

The meaning of option 0 has changed. OCCURS=0 in earlier versions

flagged OCCURS 1 as an error. OCCURS=0 in this version is ignored, and

fields are generated with OCCURS 1.

PRINTER=SYSPRINT

This is a new option. The old default was AUTOGEN, unconditionally.

Coding SYSPRINT makes your program compatible with Easytrieve Plus.

That is, reports without explicit PRINTER and the DISPLAY lines are

printed to SYSPRINT. To preserve report ddnames for programs that were

translated with version 1, change this option to AUTOGEN.

SPOOLOPT=YES

This is a new option. The old default was NO, unconditionally. Coding

YES will optimize the record size of internally generated files. You must

change this option to NO for programs that were translated with version 1.

Failure to change this parameter may result in wrong length records due to

DCB LRECL coded in the JCL.

DYNALLOC=YES

This is a new option. The old default was NO, unconditionally. This

parameter does not affect your program logic, therefore it can be left as is.

TBMEMORY=DYNAMIC

The old default was STATIC. This option affects how externally loaded

tables memory are allocated. Program logic is not affected. Coding

DYNAMIC will reduce the size of your load module.

Tailoring default PROC for the One-Step driver program

Migration Utility requires a few JOB steps when translating Easytrieve Plus

programs to COBOL. Previous Migration Utility releases supplied jobs and

procedures (PROCs) with multiple steps that accomplished the task. This

multi-step compilation process is quite different from and is more complex than in

Easytrieve Plus.

Installation

186 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

The One-Step driver program (FSYTPA00) concept resolves these differences by

running the required translating steps from a single program. It essentially makes

translating look like a single step and compatible with Easytrieve Plus. The

differences amount to changing the EZTPA00 program to FSYTPA00 on the EXEC

statement, and providing access to Migration Utility instead of Easytrieve Plus

load libraries.

Activating the FSYTPA00 program

To activate the FSYTPA00 program, do the following steps:

1. Tailor #EZTPROC, located in SYS1.SFSYJCLS

This proc is read by FSYTPA00 program. It contains all the information and

steps needed to simulate the one-step process.

To tailor, follow the comments embedded in the proc. You will probably change

the following parameters: TWORK=, CWORK=, MODEL=, EZMACDD=,

OWNLOAD=, DSNEXIT=, DSNLOAD=, COBLIB=, and IMSRLIB=. You may

have to change other parameters, depending on your requirements. Verify the

entire PROC for potential changes.

If you comment out a proc keyword, you must also comment out all references

to it.

Non-SMS users: You must make dynamically-allocated files available to

subsequent steps. To do this, globally change:

v The “PASS” option in DISP=(?,PASS,?) to “CATLG”

v The “KEEP” option in DISP=(?,KEEP,) to “CATLG”
2. Change the FSYPROCS table, located in SYS1.SFSYEZTS

You must change this program to point to the Migration Utility libraries

installed on your system. Change the PROCLIB0 constant to point to the PDS

where #EZTPROC from step #1 is located. Change the PRODUCT0 constant to

the high-level qualifier of the Migration Utility libraries.

Assemble and link the FSYPROCS program using the JCASMBAS job located in

SYS1.SFSYJCLS. This program must be linked into Migration Utility’s

SYS1.SFSYLOAD library, where FSYTPA00 is located.

Note: FSYTPA00 loads FSYPROCS to locate the #EZTPROC member and to

acquire replacement for &SYS1 symbol located in #EZTPROC. The

information in FSYPROCS must always point to proper libraries. This

means that if you rename or move your Migration Utility libraries, you

must adjust the information in FSYPROCS accordingly.

3. Test FSYTPA00

Tailor and run JCMUCL1J, which is located in SYS1.SFSYJCLS. This job

translates MUTEST00 program located in SYS1.SFSYEZTS. If all changes you

made are correct, this program should translate and link MUTEST00 program

free of errors.

If you experience allocation problems, change SVC99=MSGOFF to

SVC99=MSGALL in #EZTPROC. This will turn dynamic allocation messages

on. It may help explain what could be wrong.

Note: Do not leave your proc with messages turned on for general users. This

option prints too many messages for normal use and it degrades the

process.

Installation

Chapter 11. Installation and Migration Utility options 187

|
|

|

|

Activating Call Attachment Facility (CAF) for DB2 users

DB2/SQL users must choose:

v The method for retrieving DB2/SQL column definitions.

v The method for running a converted DB2 program.

Note: COBOL programs are located in SYS1.SFSYEZTS. JOBS are located in

SYS1.SFSYJCLS.

1. DB2/SQL column definitions can be retrieved by Migration Utility:

v Automatically from SYSIBM.SYSCOLUMNS catalog via CAF.

v By coding EASYTRAN: DCLINCL &DCLGEN in Easytrieve.

To access SYSIBM.SYSCOLUMNS table automatically, the CAF interface must

be activated using the steps below.

To use DCLINCL, refer to the description of DCLINCL in “Embedding options

in the program source” on page 205.

Tailor the JCCOBSQL job and compile the FSYDB2D1 COBOL program.

JCCOBSQL is an instream procedure. The EXEC is at the bottom of the

procedure.

v If you do not have a BIND plan, create and bind a plan that can be accessed

by each user using Migration Utility. Bind to as many systems as you need

(test, production, and so on).

For example, to create a plan IBMMIGUT and a package (collection) called

BATCH for the DBVA system, would use the following BIND parameters:

(Tailor and run JCPLNBND job)

DSN SYSTEM(DBVA) -

BIND PLAN(IBMMIGUT) PKLIST(BATCH.*) -

ISOLATION(CS) ENCODING(EBCDIC) ACTION(REPLACE)

After you bind your plan, grant PUBLIC access to it so that all users have

the proper authority to use it.

v Bind FSYDB2D1 to your systems using the JCCOBBND job. The BIND

parameters are at the bottom of the procedure. You must change the BIND

parameters to your system requirements. Note that you must bind

FSYDB2D1 as a PACKAGE for Call Attachment Facility (CAF) use.

For example, to bind FSYDB2D1 with the package (collection) called BATCH

for the DBVA system, you would use the following BIND parameters: (You

can run this as a separate BIND job)

DSN SYSTEM(DBVA) -

BIND PACKAGE(BATCH) MEMBER(FSYDB2D1) -

ACTION(REPLACE) ISOLATION(CS) ENCODING(EBCDIC) -

LIBRARY(’????????.DBRMLIB’)

Make sure that you point DBRMLIB to the DBRM library where FSYDB2D1

DBRM is located (from your compile JCCOBSQL job).

Make the following changes to EZPARAMS:

CAFPLAN=&plan,

Where &plan is the plan name you created.

CAFSSID=&ssid,

Where &ssid is the DB2 system for which the plan was created.
Note that CAFSSID= is an optional parameter. If you do not provide a default

&ssid, make sure that the correct DSNLOAD and DSNEXIT load libraries are

concatenated on your JOBLIB or STEPLIB when translating DB2 programs.

Migration Utility uses the DSNHDECP DB2 module located in these libraries to

obtain the DB2 system name (SSID) for Call Attachment Facility.

Activating Call Attachment Facility (CAF) for DB2 users

188 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

|

|

|
|

|
|

|
|

The translator uses the SYSIBM.SYSCOLUMNS table when it encounters an

“SQL INCLUDE FROM &owner.&table” in the Easytrieve Plus program, and a

DCLINCL was not previously supplied.

Try translating TESTCOL0, which is located in SYS1.SFSYEZTS, using

JCMUSQLJ. You may have to change PARM SSID (DBVA) in TESTCOL0 to use

your own SSID. This program contains SQL INCLUDE FROM SYSIBM.SYSCOLUMNS

statements to test CAF functionality. After you run JCMUSQLJ, look at the

SYSOUT file for CAF messages. TESTCOL0 should translate and BIND cleanly.

2. Converted DB2/SQL programs can be run in three ways:

v By using the standard IKJEFT1B TSO loader program.

For this method, you must translate your generated COBOL via the standard

DB2 SQL translator and BIND the program to a PLAN. (Refer to JCMUSQLJ

and JCMUSQLP jobs). SQLMODE=BIND option is required in the

EZPARAMS/EASYTRAN options table).

v By attaching to DB2 via Call Attachment Facility (CAF) from the generated

COBOL programs (at run time) with imbedded static SQL statements (static

mode).

For this method, you must translate your generated COBOL via the standard

DB2 SQL translator and BIND the program as a collection/package. (Refer to

JCMUSQLJ, and JCMUSQLP jobs. Note that the bind parameters in these

jobs must be changed to bind a PACKAGE.). SQLMODE=FSYDB250 or

SQLMODE=FSYDB200 option is required in the EZPARAMS/EASYTRAN).

v By attaching to DB2 via Call Attachment Facility (CAF) from the generated

COBOL programs (at run time) with imbedded dynamic SQL statements

(dynamic mode) via FSYSQLIO module.

For this method, you must translate your generated COBOL via the MU’s

DYNAMSQL translator. The BIND is not needed. The options,

SQLMODE=FSYDB250 and SQLBIND=DYNAMIC, are required in the

EZPARAMS/EASYTRAN). Refer to JCMUCLG* and JCMUCL* supplied

jobs. Note that you need to add DB2 DSNEXIT and DNSLOAD to the

JOBLIB of these procs.

To run your generated DB2 programs using CAF static mode, choose from

FSYDB200 or FSYDB250 as described below.

To run your generated DB2 programs using CAF dynamic mode you must use

FSYDB250 as your CAF module (SQLMODE=FSYDB250) as described below.

FSYDB200 Attaches to DB2 via CAF from the generated COBOL program

at run time using a hard-coded plan name.

 To use this program you must:

v Change the plan name in the FSYDB200 COBOL program to

your installation standard plan name and compile the

program using JCBATCOB supplied JCL. Note that this is not

a DB2 program.

v Link the generated COBOL program with FSYDB200

included. Change the EZPARAMS option to

SQLMODE=FSYDB200 before translating Easytrieve

programs. A call is generated to the CAF module at the

beginning of the generated COBOL program. Make sure that

the DB2SQL step in the translator JCL contains

ATTACH(CAF) on the PARM statement.

v Bind the generated COBOL program as a PACKAGE.

Activating Call Attachment Facility (CAF) for DB2 users

Chapter 11. Installation and Migration Utility options 189

|

|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|

|
|

v Provide SSID (DB2 system name) using the DSNHDECP load

module at run time. This is a DB2 module. Consult with

your DB2 system administrator for the proper load library.

FSYDB250 (This is the preferred module, required for

SQLBIND=DYNAMIC)

 Attaches to DB2 by means of CAF from the generated COBOL

program at run time using an external parameter file pointed to

by the //SQLDD statement. To use this program you must:

v Change EZPARAMS option to SQLMODE=FSYDB250 before

translating Easytrieve Programs. A call will be generated to

FSYDB250 module at the beginning of the generated COBOL

program.

v If you are using multi step JCL, make sure that DB2SQL step

in the translator JCL contains ATTACH(CAF) on the PARM

statement.

v If you will be using CAF in static mode, BIND the generated

COBOL program as a PACKAGE. Note that BIND is not

needed for dynamic mode.

Optionally, you can provide SSID=&ssid, SQLID=&sqlid and

PLAN=&plan by means of //SQLDD JCL at run time.

 Note: SQLDD file LRECL=80,RECFM=F.

 Comments can be placed in the input SQLDD file by placing an

asterisk (*) in position 1.

 Example:

* THIS IS FSYDB250 PARAMETER FILE FOR db2 PRODUCTION SYSTEM DB2P

SSID=DB2P,PLAN=USERPLAN

3. How does IBM CAF for DB2 work?

The IBM DSNALI program connects to the DB2 system and plan name passed

to it by the calling program.

The FSYDB200 program uses the SSID from the DSNHDECP load module

located in a load library, the hard-coded plan name, and calls the DSNALI

program at run time. Consult with your DB2 administrator for the exact

location of DSNHDECP. The module is typically located in the

&HQUAL.DSNLOAD or &HQUAL.DSNEXIT library. This load library must be

concatenated to your JOBLIB or STEPLIB at run time.

The FSYDB250 program obtains the SSID and plan name from the SQLDD file

and calls DSNALI at run time.

The following rules are observed:

v The PLAN name, SQLID, and SSID are used from the SQLDD file if

supplied.

v Any parameters not supplied in the SQLDD file are used as coded on the

PARM statement in the Easytrieve Plus program, PLAN(&plan),

SQLID=&sqlid and SSID(&ssid).

v If SSID is not specified on the PARM statement in the Easytrieve Plus

program, FSYDB250 obtains the SSID from the DFNHDECP module located

in DSNEXIT or DSNLOAD load libraries. In this case, the DSNEXIT and

DSNLOAD libraries must be concatenated to the JOBLIB or STEPLIB in your

JCL.

Activating Call Attachment Facility (CAF) for DB2 users

190 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|

|

|
|

|

|
|

|

|
|

|
|
|

|
|
|
|
|

Generating Dynamic SQL I/O module (FSYSQLIO)

Before doing this task, make sure that you successfully activate the CAF interface

as described in the previous section “Activating Call Attachment Facility (CAF) for

DB2 users” on page 188.

Tailor and submit JCASMSQL supplied JOB to assemble, translate and bind

FSYSQLIO dynamic I/O interface module. Adjust BIND step and BIND parameters

to your needs.

The source for FSYSQLIO is located in SYS1.SFSYEZTS. There are four parameters

that you can change to accommodate your requirements:

NONCURS=64,

Maximum number of non-cursor requests

CURSORS=32,

Maximum number of non-scrollable cursor requests

ICURSOR=16,

Maximum number of insensitive scrollable cursors

SCURSOR=16;

Maximum number of sensitive scrollable cursors

The number of specified requests are for supporting a single DB2 program. Do not

over-allocate. The module size should be kept to a reasonable size.

Bind a PLAN (or as many as you need) that you will be running your application

programs with. You can tailor and run the JCPLNBND job to do so. Make sure that

you specify (for the PKLIST) the same package name that was used to bind rhe

FSYSQLIO module.

Grant proper authorization to bound plans (you can use SPUFI from an ISPF

panel). For example, you can build and run the following request for PLAN

IBMMIGUT and Collection BATCH:

GRANT EXECUTE ON PLAN IBMMIGUT TO PUBLIC;

GRANT PACKADM ON COLLECTION BATCH TO PUBLIC;

GRANT BINDADD TO PUBLIC;

Run link and go test on the TESTCOL0 program (use JCMUCLGP or JCMUCL1P):

v Make sure that you specify in the TESTCOL0 program for link and go:

PARM BIND (DYNAMIC) SSID(&SSID)

If you want to link only, add LINK(TESTCOL0).

v Check the EASYTRAN options in the TESTCOL0 program. Make sure to use

SQLMODE=FSYDB250, or default to SQLMODE=FSYDB250 in EZPARAMS.

DB2 libraries are not needed when your application program is running in

Dynamic SQL mode. The program is treated as any other non-DB2 program.

However, the translator does need DB2 DSNLOAD and/or DSNEXIT libraries to

resolve the DB2 tables column definitions.

Generating Dynamic SQL I/O module (FSYSQLIO)

Chapter 11. Installation and Migration Utility options 191

|

|
|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|
|
|

|
|
|

|

|

|

|

|
|

|
|
|
|

Using EZTPA00 program loader

Migration Utility’s EZTPA00 is a general purpose program loader that extracts and

executes (fetches) the program name found in the SYSIN statement. It resides in

the SYS1.SFSYLOAD library.

Note: Do not confuse the Migration Utility EZTPA00 program with the Easytrieve

Plus compiler program, which is also named EZTPA00 and normally resides

in the Easytrieve Plus load library. Migration Utility’s EZTPA00 is a program

loader, not a compiler.

Some Easytrieve Plus users run in “compile and go” mode by pointing to

programs, located in a PDS, using a SYSIN.

For example,

//JNAME JOB ...

//STEP01 EXEC PGM=EZTPA00,
//SYSIN DD DSN=&DSNAME(TESTPGM1),DISP=SHR

Suppose that TESTPGM1 in the SYSIN above was converted to COBOL and linked

into a load library and you want to make minimal changes to your JCL. You can

invoke Migration Utility’s EZTPA00 by pointing to &HQUAL.PENGI401.LOADLIB

at run time. The TESTPGM1 program name is extracted and fetched by EZTPA00.

The benefits from using this technique may be limited. It is beneficial only to

installations that run a large number of programs in “link and go” mode as

described above, during the testing phase.

This technique is not recommended for use in a production environment as it adds

another layer of complexity.

REPORT statement default options

The EASYDTAB macro, located in SYS1.SFSYCCLM, contains default options that

are similar to those of EZTOPT table of Easytrieve Plus. Update this macro to

match the defaults of your EZTOPT table. The updating instructions can be found

at the beginning of the macro.

The following options are available:

&GDTLCTL,FIRST;

DTLCTL

 FIRST

 EVERY

 NONE

&GLINESIZE,132;

Length of Standard Print Line

&GPAGESIZE,58;

Number of report lines per page

&GPAGEWORD,’PAGE’;

Page identifier (if DBCS, make sure SI/SO are present)

&GDSPLSIZE,66;

Number of DISPLAY lines per page

Using EZTPA00 program loader

192 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

&GCNTRLSKP,1;

Number of lines after Control Breaks

&GSKIP,0;

Number of blank lines between Detail Lines

&GSPACE,3;

Number of spaces between fields

&GSPREAD,0;

SPREAD Option:

 0=NOSPREAD

 1=SPREAD

&GSUMCTL,HIAR;

Control Break Line options:

 HIAR

 ALL

 NONE

 TAG

 DTLCOPY

&GSUMSPACE,3;

Size expansion for SUM fields: 0 TO 9

>ALLYSIZE,2;

TALLY Counter Size. SUMSPACE is added to this value.

>ITLESKIP,3;

Number of lines between Headings and Titles

&GNOADJUST,0;

NOADJUST Option:

 0=ADJUST

 1=NOADJUST

&GDATESIZE,SHORT;

Reports Date usage:

 SHORT=SYSDATE

 LONG=SYSDATE-LONG

&GDATSFORM,MMDDYY;

Reports SHORT Date format:

 MMDDYY

 YYMMDD

 DDMMYY

&GDATSMASK,Z9/99/99;

SHORT Date edit mask:

 Z9/99/99

 99/99/99

&GDATLFORM,MMDDCCYY;

Reports Long Date format:

 MMDDCCYY

 CCYYMMDD

 DDMMCCYY

&GDATLMASK,Z9/99/9999;

SYSDATE-LONG edit mask:

 ZZ/99/9999

 99/99/9999

REPORT statement default options

Chapter 11. Installation and Migration Utility options 193

9999/99/99

Mask identifier table to facilitate Easytrieve USERMASK

Easytrieve Plus provides for establishing default Mask Identifiers via the EZTOPT

table. A new option has been added to Migration Utility EASTDTAB to provide

compatibility.

To create default mask identifiers, masks can be added to the EASYDTAB defaults

table located in SYS1.SFSYCCLM PDS. The system is shipped with a commented

example at the bottom of EASYDTAB. The SETVT instruction can be

un-commented and masks added as per instructions in the EASYDTAB.

Example:

 ACCL SETVT &GUSERMASK

 A,’99/99/99’

 B,’99:99:99’

 C,’ZZZZZZZ9’; ";" MUST BE AFTER THE LAST ENTRY

Migration Utility translator options

The member EZPARAMS in the Migration Utility library (SYS1.SFSYEZTS) can be

tailored to provide a global override for Migration Utility default options. A good

way of doing this is to copy the distributed parameters into your own PDS. Do not

forget to change the EZPARMS= symbolic in the JCL to point to the PDS that

contains the new member.

Also, options can be embedded in each Easytrieve Plus program source. This

method lets you have specific options for each Easytrieve Plus program. The

parameters are supplied at the beginning of the program as comment statements.

The method is fully described in “Embedding options in the program source” on

page 205.

The first line in the EZPARAMS member is the COPTION statement. The

COPTION statement describes PEngiCCL options such as the output listing and

paragraph re-sequencing options. The COPTION parameters are fully described in

the FS/PEngi Installation. The defaults as set in the distributed EZPARAMS

member are sufficient, thus there is no need for change.

Options are processed by the EASYTRAN macro. All options are keyword

parameters, except the ″TRANSLATE″ option.

Options must be coded using the standard PEngiCCL conventions for coding

macro instructions. That is, the word EXCCL can start in position 8 followed by the

macro name. Any keyword and positional parameters must be coded starting in

position 12 or after, on subsequent lines as illustrated in this example.

1...!....10...!....20...!....30...!....40....!....50...!....60...!..

 COPTION LIST=CND,ERRLIMT=015,PARASEQ=(NON,1,10)

 EXCCL EASYTRAN

 FILES=64

 FIELDS=2000

 INDENT=4

 TRANSLATE WORDS

 (BALANCE BAL)

 (AMOUNT AMT)

 TRANSLATE FIELDS

REPORT statement default options

194 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

(INTEREST-AMOUNT INT-AMT)

 (CURRENT-BALANCE CUR-BAL)

 END-TRANS ; <= END SEMICOLON IS REQUIRED

Here is a list of keywords (the value indicated is the default):

ABEND=’CON_ABEND00(FSABEC16)’

File I/O error-handler function and abend program.

FSABECOB Prints I/O errors and causes an S07 abend (data

exception).

FSABEC16 Prints I/O errors and returns RETURN-CODE 16.

ALTSEQ=() Name of the alternating sequence table to be used by internal sorts

in the generated COBOL programs. This parameter is for users

who use an Alternate Sequence table for Easytrieve Plus sorts.

Check the ALTSEQ= parameter in the EZTPOPT (Easytrieve Plus)

options table to see if you need to specify this entry. The default is

the installation default collating sequence table.

 Refer to the section on the SPECIAL-NAMES paragraph in the

COBOL Language Reference for information about creating

ALPHABET tables. Use the Migration Utility FSYSRTAQ copybook

supplied in SYS1.SFSYCCLC as a template. Migration Utility

inserts a COPY statement, for the name you specify, in the

generated COBOL SPECIAL NAMES.

CAFOWNR=(&USER)

Default DB2 table creator/owner to be used when the &owner is

not provided in the “SQL INCLUDE FROM &owner.&TBname”

statement. This parameter is the default for PARM SQLID

(’&owner’) Easytrieve Plus parameter.

 When CAFOWNR=(’&USER’) is coded (with ampersand exactly as

shown), the TSO User ID submitting the job is used. Any other

value is used explicitly as coded. For example, CAFOWNR=OD

uses “OD” as the &owner for retrieving column definitions if the

&owner is not coded.

CAFPLAN=BATCH Default Call Attachment Facility plan name for retrieving

SQL/DB2 column definitions. The specified plan must match the

BIND plan name of FSYDB2D1 program. For details, refer to

“Activating Call Attachment Facility (CAF) for DB2 users” on page

188. Coding CAFPLAN=(<NO>) disables automatic retrieval of

column information from the DB2 catalog. In such a case, the

translator expects to find a DCLINCL statement for each DB2 table

in use.

CAFSSID=(&SYS)

Up to 4 characters DB2 system (SSID) for Call Attachment Facility

(CAF) for resolving DB2 column definitions. This parameter tells

FSYDB2D1 module the DB2 system to connect to as follows:

&SYS Use SSID from DSNHDECP.

&ssid A four (4) character DB2 SSID.

Example:

CAFSSID=(DBVA)

Migration Utility translator options

Chapter 11. Installation and Migration Utility options 195

|
|
|
|

||

||

|

|

CFACTOR=NO

Intermediate results precision option for high-order math

operations:

NO Use standard COBOL COMPUTE statement rounding

rules.

YES Use 8 decimal places for intermediate results.

Note: Easytrieve Plus automatically uses 8 decimal places in

intermediate results when doing high-order math operations

(i.e., multiplication and division). COBOL COMPUTE

statement uses the maximum number of decimal places as

determined from the field definitions used in each term. As

a result, the outcome of COMPUTE may not be as precise.

Specifying CFACTOR=YES compensates for the loss by multiplying

each math expression that contains high-order operations by

1.00000000.

 As most programs do not contain math operations that require

precision and to preserve efficiency, you should keep

CFACTOR=NO as the default and code CFACTOR=YES in those

programs where precision is essential.

COBOL=COBOL390

Type of COBOL. COBOLII for COBOL II, COBOL390 for

COBOL/390 and later versions of COBOL.

COBVERBS=YES YES causes Migration Utility to scan Easytrieve field names for

Reserved COBOL Words and append -Y1 to reserved words to

prevent COBOL compiler errors. Code “COBVERBS=NO” to inhibit

this process.

COPYBOOK=NO The COBOL copybook option. Values are YES and NO.

 When COPY=YES is coded, Migration Utility generates a copy

statement for all files that are defined using %COPYNAME in

Easytrieve source.

 To use this option, a COBOL copybook must be defined with the

identical field names defined in the Easytrieve copy book. In

addition, each field must be defined with special replacement

characters :AA:. For example:

 01 FILEIN-RECORD.

 02 :AA:FIELDA PIC X(03).

 02 :AA:FIELDB PIC S9(9) COMP.

The COBOL copybook must be placed in a PDS accessible by

Migration Utility step2 and COBOL.

 Using the copybook option may not be suitable for all programs

because Migration Utility alters the generated names when

duplicate fields names are detected. Use it with caution.

COPYCHAR=’$S’ COBOL copybooks bad characters replacement string written as XY

pairs.

 When COPYBOOK=YES is specified, the translator generates a

COBOL COPY statement using the actual Easytrieve Macro name.

Such a name could contain characters not allowed by COBOL. Use

Migration Utility translator options

196 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

|
|
|

||
|

||

|
|
|
|
|
|

|
|
|

|
|
|
|

this string to replace character “X” by character “Y”. Multiple pairs

can be coded. All pairs must be enclosed in the single quotation

marks.

COPYNTAB= Table name that contains the list of Easytrieve macros that qualify

for File Record or Working Storage copybook (layout). The table

must be a PDS member of LRECL 80. The PDS must be

concatenated to FJCPYLB in the first step of your translator JCL.

This table determines which macros are to be generated as COBOL

copybooks.

 When coded, this table is searched whenever an Easytrieve macro

is encountered and the macro contains FILE or Working Storage

field definitions. If located and COPYBOOK=YES, a COBOL COPY is

generated in the place of hard-coded layout. If located and

COPYBOOK=NO, the translator uses this fact and generates a

meaningful fields prefix when the same macro is used in the

program more than once.

 To optimize translating, it is recommended that you create this

table even if COBOL COPY statements are not being generated.

 The default is no table name. Refer to “Generating COBOL COPY

statements” on page 178.

COPYVERB=(COPY)

COBOL copy to be used as COPY statement when

COPYBOOK=YES is specified.

 Change this default if you have a special copybook preprocessor

that recognizes a different verb as a COPY statement. For example,

SQL host variables are flagged by the DB2 preprocessor when

located in a copybook. To allow copybooks, you can create your

own preprocessor that recognizes some other verb as a COPY

statement to expand copybooks before the DB2 translator step.

COPYWRAP=(’==’)

COBOL copy verb REPLACING string wrap characters. These

characters are wrapped around the replacing strings of the COPY

statement when COPYBOOK=YES is specified.

 For example:

COPY &NAME

 REPLACING ==:AA:== BY ==K=== .

CURRENCY=($) Currency sign

DATEABE=NO Date routines abend option:

NO Do not abend on invalid date

YES Abend on invalid date

RC Use RETURN-CODE for invalid dates

DDFNAME= ddname of the file for reduced field names. This must be a valid

1-8 characters ddname. If coded, all field names that are reduced in

length by the translator are punched out to this file. While this is

an informational file, the punched information can be massaged for

more meaningful names and used for creating a translate table for

translating Field Names in the subsequent translating attempts.

(Refer to the ″TRANSLATE FIELDS″ option below).

 The file is not created unless this ddname is specified.

Migration Utility translator options

Chapter 11. Installation and Migration Utility options 197

The file is not created if there are no reduced fields even if ddname

is specified.

DEBUG=() This parameter controls the Migration Utility one-step translator

listing options when the FSYTPA00 driver program is used. This

option should be used to control listings at the individual program

level using ’* EASYTRAN: DEBUG (........)’. The statement is

normally placed at the beginning of the Easytrieve Plus program.

LIST/NOLIST/LISTALL

Controls FSCCL1 step (first step listing). The default is

LIST.

NOBLIST/BLIST/BLISTALL

Controls FSCCL2 step (second step). The default is

NOBLIST.

NOCOBOL/COBOL

Controls COBOL listing. The default is NOCOBOL.

LKGO/NOLKGO

Inhibits Link and Go if there is no PARM LINK (&name r)

in the Easytrieve Plus program. The default is LKGO.

NOJCL/JCL

Generate JCL to a sequential disk. The default is NOJCL.

SQLTRAN/NOSQLTRAN

Controls SQL/DB2 translator listing. The default is

SQLTRAN.

NOPDEBUG/PDEBUG

Generate DISPLAY statements at the beginning of each

paragraph name. The default is NOPDEBUG.

MSGOFF/MSGSTART/MSGALL/MSGEND

Controls FSYTPA00 internal steps messages. The default is

MSGMOFF. Other choices are:

MSGSTART Message is issued when steps initiate

MSGALL Message is issued when steps initiate and

terminate

MSGEND Message is issued when steps terminate

Here is an example of a DEBUG statement in EZPARAMS:

 DEBUG=(LIST,BLIST,COBOL)

Here is an example of a DEBUG statement in an Easytrieve Plus

program:

 * EASYTRAN: DEBUG (LIST BLIST COBOL JCL)

DECIMAL=PERIOD

Decimal point: PERIOD or COMMA

DECLGEN=FULL SQL INCLUDE generation.

FULL Generates an SQL INCLUDE &NAME for each referenced

table in the program.

PART Generates hard-coded SQL INCLUDE for the column

definitions only.

DOWHILE=PERFORM

The DO WHILE code generating method.

Migration Utility translator options

198 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

INLINE

Generates an inline PERFORM for the DO WHILE.

PERFORM

Generates a separate paragraph for each DO WHILE nest.

In general, INLINE generates logic that is less fragmented and is

easier to follow, but the reference labels inside the DO WHILE

nests are not allowed. Manual adjustments may be required. The

PERFORM option resolves reference labels at the DO WHILE level

by creating a separate paragraph for each DO WHILE nest.

DYNALLOC=YES COBOL Runtime temporary files allocation option.

YES Generates COBOL statements that allocate temporary files

dynamically at run time. This is a required statement when

using the parallel testing utility for parallel testing and

conversion of existing programs. Also, this option requires

fewer changes to your existing Easytrieve Plus JCL.

NO Does not generate COBOL statements for allocating

temporary files dynamically. When this option is used, all

temporary files generated in your COBOL program must

be defined in the JCL.

DYNINIT=VALUES

Initialization option for file records of files accessed in dynamic

mode.

SPACES

Clears file records to spaces

VALUES

Clears file records to spaces and then with COBOL

INITIALIZE.

ENDCOL=72 End column on input source: 72 or 80

ETBROWS=512 Default number of rows for external tables. This value is used

when the table rows is not coded on an external table file

definition.

FIELDS=5000 Maximum number of field definitions

FILES=128 Maximum number of supported files

FSIGN=YES FSIGN handling method for numeric display format fields:

YES Force F sign on fields located in file records

NO Do not force F sign at all

ALL Force F sign on all display numeric fields (records and

working storage)

HEADERS=128 Maximum number of fields for Report Heading statement

HFIELDS=256 Maximum number of Title fields in a single report

INARGS=124 Number of input arguments from a single parsed string.

Note: The number of INARGS should not be overestimated due to

the impact on the memory utilization. Only use a value

greater than 124 if absolutely necessary.

INDENT=3 Standard indentation (3 means three spaces)

INDEXS=256 Maximum number of index entries due to OCCURS

Migration Utility translator options

Chapter 11. Installation and Migration Utility options 199

|
|
|

|
|

|
|
|

IOCODE=EASYT Option for FILE-STATUS translation:

NATIVE

Migration Utility creates COBOL Status Codes in the

generated program when referencing FILE-STATUS. When

this option is in use, you must ensure that any hard-coded

values that are checked against FILE-STATUS fields are

properly adjusted before translating an existing Easytrieve

Plus program. For restrictions, refer to “FILE-STATUS

(STATUS) codes” on page 33.

EASYT

Migration Utility translates COBOL Status Code to

Easytrieve Plus equivalent after each I/O. This option

generates extra code, but the checking of status codes

remains compatible with those of Easytrieve Plus. No

tailoring is required.

IOERC=1000 Return Code when file I/O error is detected. Code

“IOERC=(NNNN,AUTO)” to generate unique abend code for each

I/O routine. NNNN is used as the base. One is added to return

coded in each I/O abend routine. If AUTO is not specified, the

same code is used for all I/O errors.

IOMODE=DYNAM I/O mode:

DYNAM Use dynamic I/O

NODYNAM Use static I/O

LINES=256 Maximum number of report lines for a single report

MAXARG=256 Maximum number of arguments in a single IF statement

MAXINDENT=27 Maximum indentation (applies when nested IFs are processed)

MAXPROC=256 Maximum PROC paragraphs

MAXSTR=2048 Maximum string size for a single bracketed expression

MEMINIT=SPACES

Initialization for File Records:

SPACES Clears file records to spaces

VALUES Clears file records to spaces and then with COBOL

INITIALIZE.

MNESTS=16 Maximum number of macro nests

MOVENUM=EASYT MOVE statement option for numeric fields.

NATIVE

MOVE statements operate according to COBOL rules. With

this option, the data in the source field is converted to the

type of the target field for all elementary items. For

example, data is packed when moving a display numeric

field to a packed decimal field. The group items are moved

without conversion.

EASYT

MOVE statements operate according to Easytrieve Plus

rules. With this option, all moves to or from numeric fields

are performed without data type conversion. For example,

data would be moved from a display numeric field to a

packed decimal field without conversion. If the target field

is longer, the remaining bytes are padded with spaces. This

option may yield more compatible conversions of existing

Migration Utility translator options

200 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

programs (fewer changes are needed). However, choosing

this option inhibits the ability to move fields of

non-compatible types with proper conversion.

MOVERPT=NATIVE

Move method for building REPORT LINE and TITLE lines.

NATIVE

Generates field moves in forward order, i.e., the first

defined filed is moved first, and so on.

EASYT

Generates moves in backward order (the Easytrieve Plus

way). Use this option if there are overlapping fields on

LINE or TITLE definitions that cause loss of data.

Note: When fields are moved in forward order, and there

are overlaps, the field that overlaps the previous

field is moved over the tail end (overlapped) portion

of the previous field (Migration Utility default).

When fields are moved in backward order, and there

are overlaps, the beginning of the field that overlaps

the previous field is clipped by the previous field

(the Easytrieve Plus way).

As a result of this difference, if overlap exists, the

Migration Utility generated reports may not match

those generated by Easytrieve Plus. The use of

MOVERPT=EASYT corrects this difference.

MPARMS=064 Maximum number of supported macro parameters

NAMETAB=’$S/-+A#N@V*-_-%P?Q’

Translate table for special characters found in field names. These

are coded in pairs, so “$” is translated to “S”, “/” is translated to

“-”, and so on.

NCOPIES=256 Maximum number of copybook names (macros) that qualify as

record or working storage definition that can be used in a single

program. This is the limit of the queue that keeps track of macros

and copybooks used in the program that are also listed in the table

identified in the COPYNTAB= statement.

NESTS=64 Maximum number of nested IFs

NEWPAGE=NATIVE

Blank line option when no TITLE lines exist.

NATIVE

Print a blank line at the top of each page if not TITLE lines

are present.

EASYT

Do not print a blank line at the top of each page if no

TITLE lines are present.

OBJECTS=1024 Maximum number of Objects for COBOLBAS (passed on to

PEngiBAT step)

OCCURS1=0 &field OCCURS 1 handling:

0 Flags OCCURS as an error

Migration Utility translator options

Chapter 11. Installation and Migration Utility options 201

|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|

|
|

|
|
|

|
|
|

1 Generates the field without OCCURS

2 Generates OCCURS 2 in the place of OCCURS 1

OVERFLOW=NOTAG

Fields overflow tag option for Report Totals:

NOTAG

Do not place an asterisk (*) on overflow condition

TAG Place an asterisk (*) in the last position of overflowed field

PRINTER=SYSPRINT

Default ddname for the REPORT statement printer files. This

option controls how PRINTER ddname is generated for those

reports that do not have a PRINTER associated with them.

SYSPRINT Print to SYSPRINT ddname

AUTOGEN Generate a ddname automatically

&ddname Any valid printer file ddname defined via the FILE

statement.

Note: Most installations use SYSPRINT for Easytrieve Plus default

printer. Using SYSPRINT for Migration Utility will make

parallel testing of existing programs easier. Any other value

will make parallel testing impossible.

RESET=NATIVE

Field reset option for fields defined with RESET option.

NATIVE

Fields are reset in the JOB initialization routine.

EASYT

Field are reset for every JOB cycle, i.e., every time the JOB

is entered. This is compatible with Easytrieve Plus.

RFIELDS=1024 Maximum number of fields on a single report

SPOOLOPT=YES Optimizes the record length for temporary and sort work files by

defining numeric display fields in packed-decimal (COMP-3)

format.

NO Do not generate COMP-3 fields

YES Generate COMP-3 fields

Note: For programs previously translated with SPOOLOPT=NO,

the record length for temporary files may be different when

translated with SPOOLOPT=YES. The LRECL value, if coded

in the JCL, must be adjusted to reflect the new length. When

you specify SPOOLOPT=YES, it generates shorter record

lengths and uses storage more efficiently.

SQLBIND=ANY

Establishes the default SQL/DB2 application program run mode.

STATIC

Programs are to run in static mode. This option cannot be

overridden via the PARM BIND (&option) in Easytrieve

Plus source.

Migration Utility translator options

202 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

|
|

|
|

|
|
|

|
|

|
|
|
|

DYNAMIC

Programs are to run in dynamic mode. This option cannot

be overridden via the PARM BIND (&option) in Easytrieve

Plus source.

ANY BIND is supplied in Easytrieve Plus source. Run mode

must be as supplied via the PARM BIND (&option) in

Easytrieve Plus source.

SQLFLDS=1024 Maximum number of SQL fields

SQLMODE=BIND SQL/DB2 BIND Option:

BIND Generate BIND parameters

&PGMNAME Generate a call at the beginning of the Procedure

Division for attaching to DB2/SQL at run time

(that is, CAFATTCH generates CALL

’CAFATTCH’.)

SQLPFIX=(Q-) Prefix for SQL file fields (host variables derived from DECLGENs).

A sequence number is inserted into the prefix to yield unique field

names, that is, Q1-&FIELD, for the first table, Q2-&FIELD for the

second table, and so on. The COBOL fields defined in the

DECLGENs are not used in the generated code in order to

preserve the original location of the host variables.

SQLSSID=(&SYS)

Establishes the default DB2 system (SSID) if one is not supplied by

the PARM SSID in Easytrieve Plus source.

&SYS Use SSID from DSNHDECP

&ssid A four-character DB2 SSID

Example:

SQLSSID=(DBVA)

SSMODE=FLAG Subscript Usage option for BL1, BL3, and PU fields:

FLAG Flag as an error BL1, BL3, and PU if used in subscripts

GEN Allow the use of BL1, BL3, and PU fields in subscripts

Note: Migration Utility generates special logic when accessing BL1,

BL3 and PU fields. There is a substantial overhead when

these fields are used as subscripts. The recommended option

is FLAG.

SYNCREC=REFRESH

Whether to refresh synchronized file records before invoking

user-written logic.

REFRESH Synchronized file records are to be refreshed every

time before invoking the user-written logic. This

option is compatible with Migration Utility version

1 and earlier.

NOREFRESH Synchronized file records are not to be refreshed

before invoking the user-written logic. This option

allows you to modify synchronized file records.

When duplicates are present on the master file, the

changes previously made to the master file records

are preserved and made available to the user

written logic again.

Migration Utility translator options

Chapter 11. Installation and Migration Utility options 203

|
|
|
|

||
|
|

|
|
|

||

||

|

|

SYSOUT=’*,REFDD=SYSPRINT’

Dynamic allocation statement for SYSOUT (report) files. To be used

when DYNALLOC=YES is in effect. This must be a valid SYSOUT

JCL statement enclosed in quotation marks.

TBMEMORY=DYNAMIC

Option for external tables memory.

STATIC

Tables are allocated in working storage.

DYNAMIC

Memory is dynamically allocated at run time and tables

are loaded into the acquired memory. Use this option for

large tables, to reduce the size of your load module, or for

tables that are too large for working storage.

THRESMOD=FIX Date threshold option:

FIX Fixed threshold (hard-coded at 40). This is the default. If

the input date 2-digit year is less or equal to 40, the

century is set to 2000. If the input date 2-digit year is

greater than 40, the century is set to 1900.

Note: This option obviously has limitations and programs

may have to be changed at one point to keep the

proper threshold tolerance.

ROLL Rolling threshold whereby the CPU 2-digit year is added

to 40. The formula is as follows:

 &THRESHOLD = (40 + CPU Year)

 If &THRESHOLD is less than 100:

v &ADJ1=1900

v &ADJ2=2000

If &THRESHOLD is greater than 99:

v &ADJ1=3000

v &ADJ2=2000

v &THRESHOLD = (&THRESHOLD - 100)

If the date 2-digit year is greater than &THRESHOLD, the

century is set to &ADJ1.

 If the date 2-digit year is less or equal &THRESHOLD, the

century is set to &ADJ2.

Note: The ROLL option is valid for the entire century.

TRANSLATE WORDS

The section starting with this line is the words translate table. The

full section is:

TRANSLATE WORDS

 (&FROMWORD-1 &TOWORD-1)

 .

 .

 (&FROMWORD-N &TOWORD-N)

END-TRANS

Migration Utility translator options

204 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

This table is used to reduce the field names to 16 characters or less.

Up to 256 pairs of words can be coded. Notice that the

“TRANSLATE” is not coded with an “=” like other keywords and

that the list of keywords must be enclosed in parentheses (see

example on the previous page).

TRANSLATE FIELDS

The section starting with this line is the fields translate table. The

full section is:

TRANSLATE FIELDS

 (&FROMFIELD-1 &TOFIELD-1)

 .

 .

 (&FROMFIELD-N &TOFIELD-N)

END-TRANS

This table is used to replace ambiguous field names. The new

names must be 16 characters or less. Up to 256 pairs of fields can

be coded. Notice that the “TRANSLATE” is not coded with an “=”

like other keywords and that the list of fields names must be

enclosed in parentheses (see example on the previous page).

USERXIT= The name of the user written PEngiCCL macro to be invoked at

end of job. Refer to Chapter 10, “User exits,” on page 173.

WARNDUP=GROUP Warning message option for duplicate field definitions:

GROUP A warning message is issued for W and S fields

when the duplicate field is not within the same

group

ALL A warning message is issued for W and S fields

when a duplicate field exists, and the redefinition

of the field is not of the same attributes (for

example, length, type)

NONE No warning message for duplicate fields is issued

WRKSPACE=’(CYL,(10,50),RLSE),UNIT=SYSDA’

Space to be used for dynamically allocated files. Code valid SPACE

parameters enclosed in quotation marks. Space must be allocated

in track or cylinder units. The UNIT= parameter must also be

provided, unless your installation SMS allows otherwise.

 Be careful when allocating space, as it is used for all temporary

files, whether small or large. A good practice is to allocate some

reasonable primary space and provide for more secondary space.

 You can override WRKSPACE in your program via the ’*

EASYTRAN: WRKSPACE ... ’ statement. In addition, you can provide

space for unusually large temporary files in the JCL. For example,

if there is a file that needs space for millions of records, you can

code that specific file ddname with appropriate SPACE in the JCL.

Embedding options in the program source

All EASYTRAN parameters described on the previous pages can be coded at the

beginning of each Easytrieve Plus program as comments.

In addition, SQL DECLGENs can be included in comment form via the

″EASYTRAN: DCLINCL″ statement to preserve compatibility with Easytrieve

Migration Utility translator options

Chapter 11. Installation and Migration Utility options 205

syntax. This is an alternative to the ″SQL DCLINCL &NAME″ form of DECLGEN

inclusion. One or more ″EASYTRAN: DCLINCL &NAME’ statements can be

included. Multiple DECLGEN copybook names can be specified on a single line,

each separated by at least one space. (See example below).

This method lets you mold the translating process according to program

requirements. Example below demonstrates the method.

The member ″EZTEMPLE″ located in the SYS1.SFSYEZTS can be used as a

template.

The keyword parameters need not be coded with an ″=″ sign; FILES=64 is the

same as FILES 64.

COBOL compiler options can be supplied via the ″PROCESS″ option as shown.

Multiple PROCESS options can be coded if needed.

EASYTRAN keyword parameters follow, followed by the ″TRANSLATE WORDS″

and ″TRANSLATE FIELDS″ lists. Comments can be placed along the side of each

parameter (comments start with a ″*″).

The ″END-EASYTRAN″ statement must be the last statement as shown.

 Because the statements are commented out, they do not interfere with the

Easytrieve Plus syntax.

Note: There must be at least one space between the first ″*″ and the EASYTRAN

statement, otherwise the statement is treated as a comment.

COBOL Compiler PROCESS options

The COBOL compiler PROCESS options are considered in the following sequence:

1. Your installation standard default PROCESS options.

2. Options included in the PARM= of the COBOL step.

3. Migration Utility default PROCESS options located at the beginning of the

EZPARAMS file. These options are added to the generated COBOL program

**

* EASYTRAN PROCESS LIST,ADV,OPTIMIZE * COBOL COMPILER OPTION *

* EASYTRAN DCLINCL DCLTAB2 DCLTAB3 * SQL DECLGEN (OPTIONAL) *

* EASYTRAN DCLINCL DCLTAB4 * SQL DECLGEN (OPTIONAL) *

* EASYTRAN FILES 64 * MAX NUMBER OF FILES *

* FSIGN YES * F SIGN YES/ALL/NO *

* FIELDS 2000 * MAX NUMBER OF FIELDS *

* COBVERBS YES * COBOL VERBS TABLE YES/NO *

* TRANSLATE WORDS * WORDS ALTERING OPTIONS *

* (BALANCE BAL) *

* (INTEREST INT) *

* TRANSLATE FIELDS * NAME ALTERING OPTIONS *

* (COMPANY CO) *

* (OFFICER OFF) *

* (BR~NCH BR) *

* END-TRANS *

* END-EASYTRAN *

**

 Easytrieve statements follow here

Embedding options in the program source

206 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

|

|

|

|

|
|

and override options in items 1 and 2 above. Note that you can code one or

more PROCESS statement after the COPTION parameter. PROCESS must start

in position 8.

Example:

COPTION LIST=CND,ERRLIMT=32000,BUFSIZE=32000,EZLREF

PROCESS ADV,TRUNC(BIN),NOLIST,OPTIMIZE ...
EXCCL EASYTRAN ...

4. Process statements placed in your Easytrieve Plus program by means of the

EASYTRAN override as described in “Embedding options in the program

source” on page 205. These options are added to the generated COBOL

program and override items 1, 2, and 3 above.

Example:

* EASYTRAN: PROCESS LIST,OPTIMIZE

* END-EASYTRAN

The PROCESS options available may vary with different COBOL compiler

versions. Consult your COBOL reference manual for detailed information on each

option.

When using FSYTPA00 to translate your programs, the DEBUG=(COBOL)

EZTRAN/EZPARAMS option is required to produce a COBOL compiler listing.

COBOL Compiler PROCESS options

Chapter 11. Installation and Migration Utility options 207

|
|
|

|

|
||||
||||
|
|
|
|

|

|
|

|
|
|

|
|

208 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Chapter 12. Dynamic I/O mode and PDS/PDSE support

This chapter describes Dynamic I/O mode and support for PDS and PDSE

libraries.

Dynamic I/O mode

The Dynamic I/O mode resolves the input/output file record length and VSAM

files key at program run time. This option is ideal for users who want to continue

using the Easytrieve Plus source for ongoing development.

How does it work?

COBOL file SELECT and FD statements are not generated in the COBOL code.

Instead, a File Information Block (FIB) is generated in working storage. Record

layouts are generated in the LINKAGE section with a variable tail end to provide

access to defined area plus the tail (up to 32,760 maximum on MVS). A CALL to a

supplied I/O module (FSDYNIO0) is generated in the place of standard COBOL

I/O instructions. FSDYNIO0 determines the file organization and dynamically

loads the appropriate I/O module.

Messages and returned File Status codes are COBOL-compliant. Any unrecoverable

I/O errors are trapped by MVS and a standard IBM message is issued. In some

instances, the Migration Utility I/O error handler for VSAM files displays VSAM

feedback codes found in the RPL.

Access to SYS1.SFSYLOAD load library is needed at run time.

You can activate dynamic I/O by:

v Coding IOMODE=DYNAM in the EZPARAMS table to establish the default for your

installation.

v Using EASYTRAN conventions to override the IOMODE set in EZPARAMS to

activate Dynamic I/O for a specific program.

Example:

* EASYTRAN: IOMODE DYNAM

v Coding IO FDYNIOR on the file statement to designate a specific file for Dynamic

I/O.

Example:

FILE FILEIN F (80) IO FDYNIOR

Dynamic I/O considerations

v Print files do not run in dynamic I/O mode.

v When sorting using the SORT statement, the input file record length must be

greater than, or equal to, the record length of the output file. If this is not the

case, any portion of the output file record that spans beyond the input file

record length becomes inaccessible.

v COBOL must be compiled and linked as RMODE(24). AMODE can be

AMODE(ANY) or AMODE(24).

© Copyright IBM Corp. 2002, 2005 209

Benefits of Dynamic I/O

v The VSAM file key is accessed from the catalog at run time.

v You do not need to be concerned with record length, except as noted for the

SORT statement. This lets you point to different file lengths at run time,

providing the data being accessed is defined in the layout.

v Migration Utility recognizes input files with record formats F, FB, V, VB, and

VBS at file open time. It recognizes VSAM and undefined length files from the

file definition, VS, RELATIVE, ESDS or U respectively.

v The output file record format (RECFM) is determined by the definition in the

program. However, if provided, Migration Utility extracts the record length from

the JCL.

Support for PDS/PDSE libraries

Migration Utility supports access to PDS and PDSE libraries whereby selected, or

all, library members can be accessed from Migration Utility programs. Many

system tasks that are too complex for panel-driven utilities can be easily

accomplished with a simple Migration Utility program.

Guidelines for accessing PDS/PDSE libraries

v Files are defined as PDS/PDSE files by specifying PDS file organization on the

FILE statement. The I/O module determines which file it is working with.

Note: PDS files always work in dynamic I/O mode. Migration Utility forces

dynamic I/O on PDS files.

v Migration Utility assigns a field for member name (key) in working storage. The

key can be accessed using the &FILE:KEY field. The key is returned for every

record read.

v The record format of an input PDS can be F, FB, V, VB, VBS, or U.

v The record format of an output PDS can be F, FB, V, VB, or VBS. Migration

Utility does not support output PDS or PDSE files with an undefined length.

v PDS files can be used on JOB, SORT or standard I/O (GET/ PUT and POINT)

statements.

v When accessing a PDS using a JOB or SORT statement, the system positions the

file using the value found in the &FILE:KEY field.

v When accessing a PDS using a GET or PUT statement, a POINT statement must

be issued first to position the file to the desired member.

Example:

POINT FILEIN KEY EQ WS-MEMBER-NAME

v You can point to a member name or to a data set with a member name. To point

to a data set with a wild card or A member name, use a literal or a working

storage field to provide the data set name and member.

Example:

MOVE ’DSN=SYS1.MACLIB(*)’ TO WS-DSN

POINT FILEIN KEY EQ WS-DSN

This allows you to retrieve information from multiple PDS files controlled from

your program. Migration Utility keeps track of the opened data set name, and if

it changes, it closes the previously accessed data set and opens the newly

supplied data set.

v When you specify the name of a PDS or PDSE member in the &FILE:KEY, you

can use an asterisk (*) as a wildcard to:

Dynamic I/O mode and PDS/PDSE support

210 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

– Specify a pattern

or

– Represent a string of zero or more characters

When you specify the name of a PDS or PDSE member using one or more

asterisks (*), Migration Utility selects members as follows:

– If you specify an 8-character member name containing more than one

asterisk, all members that match the pattern are selected,

otherwise

– Members are selected using a generic compare.

For example:

If you specify... Migration Utility selects...

* All members

FS* All members whose name starts with “FS”

DYN All members whose name contains “DYN”

***A**D* All members whose name contains an “A” in

position 4 and a “D” in position 7
v The PDS directory is read by specifying the DIRECTORY option on the GET

statement.

Example:

GET FILEIN DIRECTORY STATUS

v To create a PDS member, a POINT statement must be issued to establish

reference to the output member. Thereafter, the PUT statement is used to add

records to the member.

The demonstration program TESTPDS0 shown in Figure 6 on page 212 (a copy

of TESTPDS0 can be found in SYS1.SFSYEZTS) demonstrates the use of PDS

files. The JCRUNPD0 job to run this program is located in SYS1.SFSYJCLS.

v Use the %COBOL technique to take advantage of STRING, UNSTRING,

INSPECT, and other COBOL instructions to perform the parsing.

Dynamic I/O mode and PDS/PDSE support

Chapter 12. Dynamic I/O mode and PDS/PDSE support 211

**

* EASYTRAN: PROCESS LIST,ADV,OPTIMIZE * COMPILER OPTIONS *

* EASYTRAN: IOMODE DYNAM * I/O MODE *

* END-EASYTRAN *

**

* TESTPDS0: EASYTRIEVE PROGRAM ACCESSING PDS/PDSE LIBRARIES. *

* *

* THIS PROGRAM DEMONSTRATES: *

* *

* 1. HOW TO USE POINT TO ESTABLISH WILD CARD SELECTION *

* 2. HOW TO READ PDS/PDSE DIRECTORY WITH WILD CARD *

* 3. HOW TO COPY PDS MEMBERS FROM INPUT FILE TO OUTPUT FILE *

* 4. HOW TO OBTAIN DATASET NAME VIA A CALL TO FSDYNDSN PROGRAM *

* *

* INPUT: FILEIN - PDS/PDSE LIBRARIE(S) *

* PARM - WILD CARD FOR MEMBER SELECTION *

* *

* OUTPUT: PDSOUT - PDS/PDSE LIBRARY OF COPIED MEMBERS *

* REPORT1 - STATISTICAL DATA AND LIST OF SELECTED PROGRAMS *

* *

* NOTES: THIS IS A DEMO PROGRAM. USE YOUR OWN IMAGINATION TO DESIGN *

* PROGRAMS THAT ACCOMMODATE YOUR NEEDS. *

**

FILE REPORT1 PRINTER

FILE FILEIN PDS F (80)

ITEXT 1 5 A

FILE PDSOUT PDS F (80)

OTEXT 1 5 A

WS-PDS-MEMBER W 8 A VALUE ’ ’

WS-SAV-MEMBER W 8 A VALUE ’ ’

WS-COUNT W 8 N VALUE 0

WS-RCOUNT W 8 N VALUE 0

WS-DSNAME W 44 A

JOB INPUT NULL

--

* OBTAIN PARM VALUE FROM THE EXEC STATEMENT FOR GENERIC PROCESS. *

--

%GETPARM WS-PDS-MEMBER 8

DISPLAY REPORT1 ’PARM VALUE: ’ WS-PDS-MEMBER

** OBTAIN INPUT FILE DATASET NAME

%GETDSN ’FILEIN’ WS-DSNAME

DISPLAY REPORT1 NEWPAGE ’GETDSN: ’ WS-DSNAME

DISPLAY REPORT1 ’ ’

Figure 6. PDS/PDSE program example (Part 1 of 2)

Dynamic I/O mode and PDS/PDSE support

212 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

--

* READ PDS/PDSE DIRECTORY AND CREATE ADD STATEMENTS TO REPORT1. *

--

POINT FILEIN EQ WS-PDS-MEMBER STATUS

DO WHILE FILEIN:FILE-STATUS EQ 0

 GET FILEIN DIRECTORY STATUS

 IF NOT EOF FILEIN

 WS-COUNT = WS-COUNT + 1

 DISPLAY REPORT1 ’FILEIN MEMBER=’ FILEIN:KEY

 END-IF

END-DO

DISPLAY REPORT1 ’ ’

DISPLAY REPORT1 ’TOTAL PDS MEMBERS LOCATED: ’ WS-COUNT

DISPLAY REPORT1 SKIP 2

--

* LIST ALL MEMBERS IN INPUT PDS/PDSE SELECTED BY THE PARM AND COPY *

* ALL SELECTED MEMBERS TO PDSOUT PDS FILE. *

--

** OBTAIN OUTPUT PDSOUT DATASET NAME

%GETDSN ’PDSOUT’ WS-DSNAME

DISPLAY REPORT1 NEWPAGE ’PDSOUT: ’ WS-DSNAME

WS-COUNT = 0

POINT FILEIN EQ WS-PDS-MEMBER STATUS

DO WHILE FILEIN:FILE-STATUS EQ 0

 GET FILEIN STATUS

 IF NOT EOF FILEIN

 IF WS-SAV-MEMBER NE FILEIN:KEY

 WS-COUNT = WS-COUNT + 1

 DISPLAY REPORT1 ’PDSOUT MEMBER=’ FILEIN:KEY

 WS-SAV-MEMBER = FILEIN:KEY

 POINT PDSOUT EQ FILEIN:KEY

 END-IF

 PUT PDSOUT FROM FILEIN

 END-IF

END-DO

DISPLAY REPORT1 ’ ’

DISPLAY REPORT1 ’TOTAL PDS MEMBERS CREATED: ’ WS-COUNT

DISPLAY REPORT1 ’ ’

STOP

---------------------- END OF PROGRAM ------------------------------

Figure 6. PDS/PDSE program example (Part 2 of 2)

Chapter 12. Dynamic I/O mode and PDS/PDSE support 213

214 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Chapter 13. Toolkit replacement macros

This chapter describes Toolkit and date-handling replacement macros, and

enhanced date threshold handling.

Toolkit and date-handling replacement macros

Easytrieve Plus provides some special macros for date calculation and some more

commonly-used functions. These macros are known as “Toolkit” macros.

Migration Utility provides the Toolkit replacement macros listed below. The macros

are written in CCL1 language (PEngiCCL). Macros are DISTRIBUTED in byte code

in the SYS1.SFSYFJCC library and as macro source in the SYS1.SFSYCCLM library.

All date routines use the Gregorian Leap Year formula as follows:

The year is a leap year if:

v It is divisible by 4 and not divisible by 100,

or

v It is divisible by 400

The following Toolkit date-replacement macros are provided:

ALPHACON Unstring a edited number into an internal numeric format

CONVAE Convert ASCII to EBCDIC

CONVEA Convert EBCDIC to ASCII

DATECALC Add or subtract a number of days to a date

DATECONV Convert a date of any format to any format

DATEVAL Date validation

DATEVALE A Migration Utility special macro called by DATEVAL (internal use

only)

DATEMASK A Migration Utility special macro called by all date macros

(internal use only)

DAYSAGO Calculate days elapsed from User date to today

DAYSCALC Calculate the number of days between two dates

GETDATE Get the 6-digit system date

GETDATEL Get the 8-digit system date

WEEKDAY Obtain the name of the day of the week (for example, MONDAY)

The following Toolkit special purpose replacement macros are provided:

DIVIDE Module N division

EXPO Exponentiate a number

NUMTEST Test field for numeric, and count bad fields

RANDOM Random number generator

© Copyright IBM Corp. 2002, 2005 215

SQRT Square root calculation

UNBYTE Decode a byte into 8 bytes of 0 and 1 flags

The following special purpose Migration Utility macros are provided:

GETDSN Get data set name from the JCL

GETJOB Obtains JOB number and TSO User from the Job Scheduler

GETPARM Get PARAMETERS from the PARM= statement in the JCL

PARSE Special parsing macro (uses the COBOL UNSTRING statement)

The coding conventions for the above macros are described later in this chapter.

The date macros generate code that call FSDATEZ0 and FSDATSRV modules at run

time. Access to SYS1.SFSYLOAD is needed at run time.

Macros search sequence

Migration Utility normally obtains Easytrieve Macros from libraries defined for the

FJCPYLB ddname in the FSCCL1 step of your JCL.

Make sure that the SYS1.SFSYCCLM PDS is concatenated in FJCPYLB and

FJMACLB before any other Easytrieve Plus macro libraries. It is used as a finder

PDS for replacement macros.

When Migration Utility locates a macro in FJCPYLB, it determines the macro

format (Easytrieve or CCL1) and invokes the appropriate interpreter.

CCL1 macros are executed from the byte code library (FJCCLLB) if found there.

Otherwise, the copy found in FJMACLB SYS1.SFSYCCLM source is used.

Enhanced date threshold handling

Migration Utility provides enhanced handling of the date threshold for deriving

the century from a 2-digit year. It provides for a fixed threshold or a rolling

threshold.

Note: All Migration Utility date calculation macros default to THRESHOLD 0.

The program default date threshold options are generated in the COBOL program

at translation time as follows:

v If the THRESHOLD value coded in the date macros (default or user-supplied) is

not zero, the macro threshold value is used.

v If the THRESHOLD value coded in the date macros (default or user-supplied) is

equal to zero, the EZPARAMS/EASYTRAN coded threshold value is used as

follows:

THRESMOD=FIX/ROLL

– FIX for fixed threshold (hard-coded at 40). This is the default.

If the input date 2-digit year is less or equal to 40, the century is set to 2000.

If the input date 2- digit year is greater than 40, the century is set to 1900.

Note: This option obviously has limitations and programs may have to be

changed to maintain the correct threshold tolerance.

– ROLL for the rolling threshold whereby the CPU 2-digit year is added to 40.

Toolkit and date-handling replacement macros

216 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

&THRESHOLD = (40 + CPU year)

If &THRESHOLD is less than 100:

- &ADJ1=1900

- &ADJ2=2000

If &THRESHOLD is greater than 99:

- &ADJ1=3000

- &ADJ2=2000

- &THRESHOLD = (&THRESHOLD - 100)

If the input date 2-digit year is greater than &THRESHOLD, the century is set

to &ADJ1.

If the input date 2-digit year is less or equal &THRESHOLD, the century is

set to &ADJ2.

Note: The ROLL option accommodates this century without having to change

programs.
v Runtime options allow you to override the hard-coded threshold generated in

the program by coding DD statements in the application run JCL:

//FJTHRES0 DD DUMMY Forces a fixed threshold of 40

//FJTHRES1 DD DUMMY Forces a rolling threshold of (40 + CPU two digit

year)
The search priority is FJTHRES0 but, if not present, FJTHRES1 is used.

Available date masks

The special macro, DATEMASK, changes the user-supplied mask to a “proper”

mask that is understood by FSDATEZ0 and FSDATSRV (Migration Utility)

programs.

The DATEMASK macro is invoked internally by all DATE macros. Do not use it in

stand-alone mode.

The available masks are shown below. COL1 shows the user masks; COL2 shows the

equivalent masks understood by the FSDATEZ0 program. Any “YYYY” found in

the macros is changed to “CCYY”.

 COL1 COL2

 MMDDYY MMDDYY, .STANDARD FORMATS FOR FSDATEZ0

 MMDDCCYY MMDDCCYY

 MDY MMDDYY

 MDCY MMDDCCYY

 MMYYDD MMYYDD, .SPECIAL FORMATS FSDATEZ0

 MMCCYYDD MMCCYYDD

 MYD MMYYDD

 MCYD MMCCYYDD

 DDMMYY DDMMYY, .SPECIAL FORMATS FOR FSDATEZ0

 DDMMCCYY DDMMCCYY

 DMY DDMMYY

 DMCY DDMMCCYY

 DDYYMM DDYYMM, .SPECIAL FORMATS FOR FSDATEZ0

 DDCCYYMM DDCCYYMM

 DYM DDYYMM

 DCYM DDCCYYMM

 YYMMDD YYMMDD, .STANDARD FORMAT FOR FSDATEZ0

 CCYYMMDD CCYYMMDD

Enhanced date threshold handling

Chapter 13. Toolkit replacement macros 217

YMD YYMMDD

 CYMD CCYYMMDD

 YYDDMM YYDDMM, .SPECIAL FORMAT FOR FSDATEZ0

 CCYYDDMM CCYYDDMM

 YDM YYDDMM

 CYDM CCYYDDMM

 YYDDD YYDDD, .JULIAN STANDARD FORMAT

 CCYYDDD CCYYDDD

 YD YYDDD

 CYDDD CCYYDDD

ALPHACON macro: coding rules

Purpose: Unstrings an edited number into a numeric field suitable for

arithmetic.

Usage: %ALPHACON &alphafield &numfield DECIMAL (’&dec’)

CALLCOUNTER (&count)

 where:

&alphafield An alpha field that contains an edited number.

&numfield A receiving numeric field.

&dec Decimal point (character). The default is “.”

(period).

&count Call counter (not used by Migration Utility). The

default is 1.

Notes: The ALPHACON macro invokes the FSDIMAGE program at run

time dynamically. Access to the SYS1.SFSYLOAD library is

required at run time. On completion, the ALPHACON-FLAG field

contains:

YES Successful conversion

LEFT Integer portion cannot fit into the &numfield

RIGHT Decimal portion cannot fit into the &numfield

decimals

BOTH Neither the integer or the decimals can fit into the

&numfield

Examples:

DEFINE WS-EDITED-FIELD W 15 A VALUE ’123.55’

DEFINE WS-NUMERIC-FIELD W 9 N 2 ...
%ALPHACON WS-EDITED-FIELD W S-NUMERIC-FIELD DECIMAL (’.’)

CONVAE macro: coding rules

Purpose: Converts ASCII characters to EBCDIC.

Usage: %CONVAE &file STARTPOS &field LENGTH &length

 where:

&file A file name. If coded, file record is used.

&field Field to be converted.

&length Field length.

Enhanced date threshold handling

218 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Notes: The CONVAE macro invokes the FSDYNCNV program at run time

dynamically. Access to the SYS1.SFSYLOAD library is required at

run time.

Examples:

DEFINE FILEIN F (500) ...
%CONVAE FILEIN LENGTH (500)

DEFINE WS-ALPHA-FIELD W 15 A VALUE ’ABCDE’ ...
%CONVAE STARTPOS WS-ALPHA-FIELD LENGTH (15)

CONVEA macro: coding rules

Purpose: Convert EBCDIC characters to ASCII.

Usage: %CONVEA &file STARTPOS &field LENGTH &length

 where:

&file A file name. If coded, file record is used.

&field Field to be converted.

&length Field length.

Notes: The CONVAE macro invokes the FSDYNCNV program at run time

dynamically. Access to the SYS1.SFSYLOAD library is required at

run time.

Examples:

DEFINE FILEIN F (500) ...
%CONVEA FILEIN LENGTH (500)

DEFINE WS-ALPHA-FIELD W 15 A VALUE ’ABCDE’ ...
%CONVEA STARTPOS WS-ALPHA-FIELD LENGTH (15)

DATECALC macro: coding rules

Purpose: Adds or subtracts a number of days to any date and places the

result into the target user date of any format.

Usage: %DATECALC &fdate &fmask &sign &days &tdate &tmask

THRESHOLD YY

 where:

&fdate The input date.

&fmask Input date format. For example, MMDDYY.

&sign PLUS when adding days, MINUS when subtracting

days.

&days Number of days to add or subtract.

&tdate Output date.

&tmask Output date format. For example, YYMMDD.

THRESHOLD YY

Threshold year. This is an optional parameter. The

default is 00.

Notes: Coding 0 for the threshold value for this macro results in the

default threshold value being used in the FSDATSRV module.

Currently, the default threshold in FSDATSRV program is 40. The

CONVAE

Chapter 13. Toolkit replacement macros 219

threshold of zero is recommended. Refer to the THRESMOD=

option of EZPARAMS/EASYTRAN for additional ROLLING or

FIXED threshold flexibility.

Examples:

%DATECALC F-DATE YYMMDD PLUS 15 T-DATE MMDDYY

%DATECALC F-DATE YYMMDD PLUS 15 T-DATE MMDDYY THRESHOLD 40

DATECONV macro: coding rules

Purpose: Converts dates from any format to any other format.

Usage: %DATECONV &fdate &fmask &tdate &tmask THRESHOLD YY

 where:

&fdate The input date.

&fmask Input date format. For example, MMDDYY.

&tdate Output date.

&tmask Output date format. For example, YYMMDD.

THRESHOLD YY

Threshold year. This is an optional parameter. The

default is 00.

Notes: Coding 0 for the threshold value for this macro results in the

default threshold value being used in the FSDATSRV module.

Currently, the default threshold in FSDATSRV program is 40. The

threshold of zero is recommended. Refer to the THRESMOD=

option of EZPARAMS/EASYTRAN for additional ROLLING or

FIXED threshold flexibility.

Examples:

%DATECONV F-DATE YYMMDD T-DATE MMDDYY

%DATECONV F-DATE YYMMDD T-DATE MMDDYY THRESHOLD 40

DATEVAL macro: coding rules

Purpose: Validates input date for the given mask.

Usage: %DATEVAL &fdate &fmask THRESHOLD YY

 where:

&fdate The input date.

&fmask Input date format. For example, MMDDYY.

THRESHOLD YY

Threshold year. This is an optional parameter. The

default is 00.

Notes: Coding 0 for the threshold value for this macro results in the

default threshold value being used in the FSDATSRV module.

Currently, the default threshold in FSDATSRV program is 40. The

threshold of zero is recommended. Refer to the THRESMOD=

option of EZPARAMS/EASYTRAN for additional ROLLING or

FIXED threshold flexibility.

 On completion, the DATEVAL-FLAG contains ’YES’ for a valid

date, and ’NO’ for an invalid date. The flag can be tested and

programming decisions can be made based on the outcome.

DATECALC

220 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Examples:

%DATEVAL I-DATE YYMMDD

IF DATEVAL-FLAG EQ ’YES’

 .

 .

END-IF

%DATEVAL I-DATE CCYYMM THRESHOLD 50

IF DATEVAL-FLAG EQ ’YES’

 .

 .

END-IF

DAYSAGO macro: coding rules

Purpose: Calculates the number of days elapsed between two dates.

Usage: %DAYSAGO &date &format &operator &operand THRESHOLD

YY

 where:

&date The input date.

&format Input date format. For example, MMDDYY.

&operator Code relational operator: EQ, =, NE, GT, ,LT, GE,

LE

&operand A numeric field name or constant to compare with.

This value is the number days that you want to

verify.

THRESHOLD YY

Threshold year. This is an optional parameter. The

default is 00.

Notes: Coding 0 for the threshold value for this macro results in the

default threshold value being used in the FSDATSRV module.

Currently, the default threshold in FSDATSRV program is 40. The

threshold of zero is recommended. Refer to the THRESMOD=

option of EZPARAMS/EASYTRAN for additional ROLLING or

FIXED threshold flexibility.

 On completion, the DAYSAGO-FLAG contains “YES” if the criteria

is met, otherwise it contains “NO”. The flag can be tested and

programming decisions can be made based on the outcome.

 The DAYSAGO-DIFF field contains the number of days between

today’s CPU date and the input date. If the input date is higher

than the CPU date the value returned in the DAYSAGO-DIFF will

be negative.

Examples:

%DAYSAGO I-DATE MMDDYY EQ 15

IF DAYSAGO-FLAG EQ ’YES’

 .

 .

END-IF

%DAYSAGO I-DATE CCYYMMDD EQ 30 THRESHOLD 45

DATEVAL

Chapter 13. Toolkit replacement macros 221

DAYSCALC macro: coding rules

Purpose: Calculates the number of elapsed days between two dates.

Usage: %DAYSCALC &fdate &fmask &tdate &tmask &result

THRESHOLD NN

 where:

&fdate The input date.

&fmask Input date format. For example, MMDDYY.

&tdate Output date.

&tmask Output date format. For example, YYMMDD.

&result A numeric field for returned number of days.

THRESHOLD YY

Threshold year. This is an optional parameter. The

default is 00.

Notes: Coding 0 for the threshold value for this macro results in the

default threshold value being used in the FSDATSRV module.

Currently, the default threshold in FSDATSRV program is 40. The

threshold of zero is recommended. Refer to the THRESMOD=

option of EZPARAMS/EASYTRAN for additional ROLLING or

FIXED threshold flexibility.

 The &result field contains the number of days between & fdate

and &tdate dates. If the &tdate is higher than the &fdate, the value

returned in the &result is negative.

Examples:

%DAYSCALC F-DATE MMDDYY T-DATE YYMMDD WS-DAYS

%DAYSCALC F-DATE MMDDYY T-DATE YYMMDD WS-DAYS THRESHOLD 45

DIVIDE macro: coding rules

Purpose: Divides an input number, giving a quotient and a remainder.

Usage: %DIVIDE &number &divisor "ient &remainder

 where:

&number A numeric field to be divided.

&divisor The divisor.

"ient Output quotient numeric field.

&remainder Output remainder numeric field.

Example:

%DIVIDE I-NUMBER 15 O-QUOTIENT O-REMAINDER

EXPO macro: coding rules

Purpose: Exponentiates a number.

Usage: %EXPO &value &exponent &result

 where:

&value The numeric field to be exponentiated.

&exponent The exponent.

&result The outcome of the exponentiation.

Notes: This macro uses the COBOL COMPUTE statement to perform the

exponentiation.

DAYSCALC

222 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Migration Utility provides an alternative way to code an assign

statement using ** for exponentiation.

Example:

%EXPO I-NUMBER 3.5 O-RESULT

GETDATE macro: coding rules

Purpose: Gets a 6-digit current date in numeric format (without insert

characters).

Usage: %GETDATE &date

 where:

&date A numeric field for the retrieved date.

Notes: The returned date is the date retrieved at the program start-up

time in YYMMDD format.

Example:

%GETDATE WS-DATE

GETDATEL macro: coding rules

Purpose: Gets an 8-digit current date in numeric format (without insert

characters).

Usage: %GETDATEL &date

 where:

&date A numeric field for the retrieved date.

Notes: The returned date is the date retrieved at the program start-up

time in CCYYMMDD format.

Example:

%GETDATEL WS-DATE-LONG

GETDSN macro: coding rules

Purpose: Obtains the data set name for a specified ddname (MVS only).

Usage: %GETDSN &DDname &dsname

 where:

&DDname File DDname (1 to 8 characters).

&dsname A 44-byte field for the retrieved data set name.

Notes: GETDSN macro invokes FSDYNDSN program at run time

dynamically. Access to SYS1.SFSYLOAD library is required at run

time.

 On completion, RETURN-CODE can be tested for a successful call:

v When RETURN-CODE equals zero, the &DDname was located

in the JCL and was placed into the &dsname field.

v When RETURN-CODE is not equal to zero, &DDname is not in

the JCL. The &dsname is cleared to spaces.

Example:

DEFINE WS-DSNAME W 44 A

%GETDSN ’FILEIN’ WS-DSNAME

EXPO

Chapter 13. Toolkit replacement macros 223

GETJOB macro: coding rules

Purpose: Obtains Job Number and TSO User from the JOB Scheduler

Information Block.

Usage: %GETJOB

Notes: The GETJOB macro invokes the FSYGJOB0 program at run time

dynamically. Access to the SYS1.SFSYLOAD library is required at

run time.

 On completion, the following information is available:

DEFINE GETJOB-DATA W 80 A

DEFINE GETJOB-WORKID GETJOB-DATA +00 8 A

DEFINE GETJOB-JOBID GETJOB-DATA +08 8 A

DEFINE GETJOB-JOBNAME GETJOB-DATA +16 8 A

DEFINE GETJOB-JOBSTEP GETJOB-DATA +24 8 A

DEFINE GETJOB-PREFIX GETJOB-DATA +32 8 A

DEFINE GETJOB-UERID GETJOB-DATA +40 8 A

Example:

%GETJOB

GETPARM macro: coding rules

Purpose: Gets parameter information from the EXEC PARM= statement in

the JCL.

Usage: %GETDATEL &field &length

 where:

&field A field to hold parameter information.

&length The length of the field.

Notes: The PARM information is moved from the system area passed to

the COBOL program via the LINKAGE SECTION into the

designated field.

Example:

DEFINE WS-PARAMETER W 8 A

%GETPARM WS-PARAMETER 8

NUMTEST macro: coding rules

Purpose: Tests a field for numeric content, and counts the number of

non-numeric occurrences.

Usage: %NUMTEST &field &description &field-id

 where:

&field Input field to be tested.

&description Description for the DISPLAY message when not

numeric.

&field-id Identifier for the DISPLAY message when not

numeric.

Notes: On completion, the NUMTEST-FLAG contains “YES” when the

field is numeric, otherwise it contains “NO”. The flag can be tested

and programming decisions can be made based on the outcome.

GETJOB

224 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Examples:

%NUMTEST I-FIELD ’NUMERIC FIELD TEST’ ’I-FIELD’

IF NUMTEST-FLAG NE ’YES’

 .

 .

 END-IF

PARSE macro: coding rules

Purpose: Parses a string and places the contents into an array of strings with

the corresponding lengths.

Usage: %PARSE &string &into &occurs DELIM(&delim) PFX(&pfx)

SIZE(&size)

 where:

&string A quoted string or a field to parse. This is a

required parameter.

&into Name of the array (tokens) to parse into. This is a

required parameter.

&occurs Maximum number of words (tokens). This is a

required parameter

&delim Delimiter character(s). The default is spaces

&pfx Prefix for &into for unique array names. The

default is no prefix.

&size Maximum size of each word (token). The default is

80.

Notes: Parsing is done using the UNSTRING COBOL statement. Each

parsed word is placed into the &pfx&into array and the length into

the corresponding &pfx&into-LEN field. Working storage is

generated for each unique &pfx&into array as follows:

DEFINE &PFX&INTO W &SIZE A OCCURS &OCCURS

DEFINE &PFX&INTO.-LEN W 2 B 0 OCCURS &OCCURS

DEFINE &PFX&INTO.-COUNT W 4 B 0

DEFINE &PFX&INTO.-ERRCD W 4 B 0

On completion:

v &PFX&INTO array contains the extracted words.

v &PFX&INTO-LEN contains the length of each word respectively.

v &PFX&INTO-COUNT field contains the number of extracted

words.

v &PFX&INTO-ERRCD contains the error code (currently always

set to zero).

Examples:

%PARSE I-STRING TOKEN 50 DELIM (PARSE-CHAR)

%PARSE I-STRING TOKEN 80 PFX(’A’) SIZE(30)

If the input string is a subscripted field, enclose the &string in

quotation marks with the necessary subscript:

%PARSE ’I-STRING (SUB1)’ TOKEN 80 DELIM (’,’ ’$’ ’!’) PFX(’B’) SIZE(45)

NUMTEST

Chapter 13. Toolkit replacement macros 225

RANDOM macro: coding rules

Purpose: Generates a random number (of 1 to 18 digits) based on an initial

random SEED.

Usage: %RANDOM &rand &seed &digits

 where:

&rand A numeric field in which the random number is

returned.

&seed Random function seed (must be a number or a

numeric field).

&digits The length of the returned &rand number.

Notes: This macro uses the COBOL RANDOM function number generator.

SQRT macro: coding rules

Purpose: Calculates the square root of a number.

Usage: %SQRT &number &result

 where:

&number The input numeric field.

&result A numeric field for output.

Notes: This macro uses the COBOL COMPUTE statement to perform the

exponentiation.

 Migration Utility provides an alternative way to code an assign

statement using ** for exponentiation.

Example:

%SQRT I-NUMBER .5 O-RESULT

UNBYTE macro: coding rules

Purpose: Generates 8 digits of “0” or “1” representing each bit in the input

byte (using left-to-right decoding).

Usage: %UNBYTE &ibyte

 where:

&ibyte One-byte input field to be decoded.

Notes: On completion, the field names BIT0, BIT1, BIT2, BIT3, BIT4, BIT5,

BIT6 and BIT7 correspond to the byte bits of the input field.

ALLBITS is the 8-byte group field name for these elementary

fields.

Example:

%UNBYTE I-BYTE

IF BIT0 EQ 1 OR BIT7 EQ 0

.

.

.

END-IF

RANDOM

226 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

WEEKDAY macro: coding rules

Purpose: Validates the given date and returns the name of the day of the

week.

Usage: %WEEKDAY &fdate &fmask &day THRESHOLD NN

 where:

&fdate The input date.

&fmask Input date format. For example, MMDDYY.

&day An alphanumeric field for the returned name of the

day of the week.

THRESHOLD YY

Threshold year. This is an optional parameter. The

default is 00.

Notes: Coding 0 for the threshold value for this macro results in the

default threshold value being used in the FSDATSRV module.

Currently, the default threshold in FSDATSRV program is 40. The

threshold of zero is recommended. Refer to the THRESMOD=

option of EZPARAMS/EASYTRAN for additional ROLLING or

FIXED threshold flexibility.

 On completion, the &day field contains the day of the week (such

as MONDAY, TUESDAY, and so on).

Examples:

%WEEKDAY I-DATE MMDDYY WS-WEEK-DAY

%WEEKDAY I-DATE MMDDYY WS-WEEK-DAY THRESHOLD 40

WEEKDAY

Chapter 13. Toolkit replacement macros 227

WEEKDAY

228 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Chapter 14. Messages

Migration Utility works in two steps:

1. The PEngiEZT translator converts Easytrieve source files to PEngiBAT source

files.

2. The PEngiBAT translator translates the PEngiBAT files to COBOL source files.
 ┌────────────┐ ┌────────────┐ ┌──────────┐

Easytrieve │ │ PEngiBAT │ │ COBOL │ │

Source │ PEngiEZT │ Source │ PEngiBAT │ Source │ COBOL │

 ───────�┤ Translator ├─────────�┤ Translator ├───────�┤ Compiler │

 │ │ │ │ │ │

 └────────────┘ └────────────┘ └──────────┘

 These two steps relate to the error messages that Migration Utility produces, and

the action that you take in response to the messages.

Some of the messages produced by the first step are described in “Migration

Utility (macro) generated error messages” on page 232. These messages relate to

user and syntax problems. The description of the message also gives pointers as to

how you fix the problem.

The rest of the messages produced by the first step are described in “PEngiCCL

generated messages” on page 285. From the description of the message, you will

have to determine whether you caused the message with bad syntax (in which

case you can fix the problem), or whether the problem is an error in macro

definition. If the latter, then you need to report the problem to IBM.

Messages produced by the second step are described in “Migration Utility macro

generated messages” on page 250 and “Migration Utility function generated

messages” on page 274. In Migration Utility, you cannot intervene in Step 2 to

produce errors, so any messages that are reported must relate to an error produced

by Step 1. This should not happen. If you have a message reported by Step 2, then

you need to report the problem to IBM.

The PEngiEZT error messages are preceded by the word *ERROR*. The messages

are described in the error number sequence. The word ″*ERROR*″ and the

condition code are not shown as part of the message because they do not change.

 ERROR EZT000-01,012 MAXIMUM OF NN OBJECTS EXCEEDED

 | | |

 | | |

 Error Condition Message

 Number Code Text

Messages are included in the SYSOUT file produced by the PEngiCCL

preprocessor. Every message is written in two places:

v Immediately following the statement or macro that caused the error.

v At end of the listing, showing the page and the line number of the statement in

error

The first page of the PEngiCCL preprocessor program listing contains the

preprocessor options in effect and the errors summary, that is, the highest severity

code and the number of errors detected during preprocessing.

© Copyright IBM Corp. 2002, 2005 229

To check for errors, look at the error summary on the first page of the preprocessor

program listing. If the highest error severity code and the number of errors

detected are not zero, then you had errors.

To locate errors, you can either scroll to the last page of the listing where the errors

are shown and use the statement and/or page number to locate the actual error

message and the statement in error, or you can browse through the listing.

Error messages are displayed following the statement or macro in error.

It is possible to get PEngiCCL preprocessor messages due to the previously

detected errors. You should resolve all obvious errors by elimination process first.

PEngiCCL preprocessor errors are typically caused by problems such as long data

strings, missing parameters, null data strings, and so on.

MNOTEs (Warnings) are of informational nature. They do not inhibit code

generation.

PEngiCCL error messages are composed of the error number, error severity code

and a descriptive message. These messages are described in “PEngiCCL generated

messages” on page 285, in error number sequence. Typically, each PEngiCCL

message text includes a supplement text, up to 12 characters long, of the data

string in error. The supplement text is separated from the message by a “:”.

 DEFCOM-01,012 -TEXT-:INPUT DATA LENGTH IS ZERO

 | | |

 | | |

 Error Severity Supplement and Message

 Number Code Text

PEngiCCL (macro) and Function error messages are in the form of PEngiCCL

Mnote (Macro Note). That is, messages are preceded by the word **MNOTE**.

These messages are described in “Migration Utility macro generated messages” on

page 250 and “Migration Utility function generated messages” on page 274, in

error number sequence. The word ″**MNOTE**″ and the condition code are not

shown as part of the message since they do not change.

 MNOTE 012 DCCL-01 MAXIMUM OF NN OBJECTS EXCEEDED

 | | |

 | | |

 Condition Error Message

 Code Number Text

Error messages are displayed following the statement or macro in error. Use the

index (in the back of this book) to locate the message.

Macro instructions and functions are embedded in the program source with

respective parameters. Errors can be detected during parameter collection or

during the execution of the macro(s).

When collecting macro parameters, the PEngiCCL macro processor collects all

macro parameters, bound by the Macro Start (_ or EXCCL) and the Macro End (;)

delimiter, before it gives control to each macro for processing. The syntax errors are

detected and displayed during the parameter collection process.

When collecting Function parameters, the PEngiCCL function processor collects all

function parameters, bound by the paired parentheses following the function

Messages

230 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

name, before it gives control to each function for processing. The syntax errors are

detected and displayed during the parameter collection process.

All other errors are detected during the macro execution. Thus, errors are

displayed following the last macro parameter of each macro invocation.

Notes:

1. All PEngiCCL preprocessor messages are included in “PEngiCCL generated

messages” on page 285 for convenience. Because the PEngiCCL preprocessor is

a macro interpreter, most messages are related to the interpretation of the

macro directives embedded in the PEngiCCL macros. Such messages are

encountered during the development of the new PEngiCCL macros.

2. It is possible to get PEngiCCL preprocessor messages due to the previously

detected errors or MNOTES. You should first resolve all obvious errors by

process of elimination. PEngiCCL preprocessor errors are typically caused by

fairly obvious mistakes such as long data strings, missing parameters, or null

data strings. If you still cannot resolve a PEngiCCL preprocessor error after

eliminating all MNOTES and obvious errors, contact the IBM service center.

3. The most frequent errors are caused by a misplaced macro-end delimiter (:), or

by data placed in column 72, or before column 12. Some errors can be caused

by unpaired quotes or parentheses. To solve the problem, check the following:

v Every macro instruction must be terminated by a “:”.

v Macro parameters can be coded following the macro instruction name on the

same line, or starting in column 12 on subsequent lines. Column 72 is used

as continuation byte. Do not code any data in CC 72 unless you are

intending to continue a quoted string.

v Quoted strings must contain paired quotes. If you need a quote as a data

item, code double quotes.

v Bracketed parameters must contain paired brackets. The translator searches

all parameters until a paired bracket is found, which may cause parsing of

unintended strings that follow macro parameters.

Messages

Chapter 14. Messages 231

Migration Utility (macro) generated error messages

EZT000-00 &text

Explanation: This message is a generic message for

errors detected while interpreting the

EASYTRAN/EZPARAMS parameters.

User Response: The &text is self-explanatory. Make

necessary changes as needed.

EZT000-00 MAXIMUM OF 256 TRANSLATE

WORDS EXCEEDED

Explanation: The number of translate words exceeds

maximum of 256.

User Response: Limit the number of translate words

in EZPARAMS member to maximum of 256.

EZT000-01 NN :ILLEGAL NUMBER OF DECIMAL

PLACES

Explanation: The specified number of decimal places

is illegal as written.

User Response: Make sure that the number of decimal

places is numeric and less than 18.

EZT000-02 &WORD :NOT SUPPORTED BY THE

TRANSLATOR

Explanation: The displayed statement is not

supported by PEngiEZT.

User Response: Correct or remove the erroneous

statement.

EZT000-03 &WORD :STATEMENT ILLEGAL OR

OUT OF SEQUENCE

Explanation: The displayed statement is illegal or out

of sequence. Possible causes are:

v Missing PROC before Report Exits

v Illegal Report Exit Name

v ENDPROC not preceded by a PROC

v HEX display specified in Report Exits

v HEX mask followed by extraneous parameters

v DEFINE used inside a JOB (Define is not supported

inside a job)

v Misplaced Field Qualifier in field definition

v Table entry contains too many arguments

v RESET specified for non-work field

User Response: Correct or remove the erroneous

statement.

EZT000-04 &FIELD :UNSUPPORTED FIELD

CLASS

Explanation: Field class is not A, N, P, B, K or U.

User Response: Enter the correct field class.

EZT000-05 &WORD :UNKNOWN OR

INCOMPLETE STATEMENT

Explanation: Statement preceding the message is

incomplete or not an Easytrieve statement.

User Response: Correct the erroneous statement.

EZT000-06 &WORD :ILLEGAL FIELD POSITION

Explanation: Field position is not numeric or name

referenced is undefined.

User Response: Correct the erroneous statement.

EZT000-07 &WORD :ILLEGAL OCCURS OR

INDEX STATEMENT

Explanation: Missing or non-numeric duplication

factor, or missing index name.

User Response: Correct the erroneous statement.

EZT000-08 &WORD :ILLEGAL BINARY FIELD

MEMORY SIZE

Explanation: Binary field size is not 1, 2, 3, or 4.

User Response: Correct the erroneous statement.

EZT000-09 &WORD :FILE WAS NOT DEFINED

Explanation: File to COPY was not defined.

User Response: Correct the erroneous statement.

EZT000-10 &WORD :MISPLACED OR

UNSUPPORTED MASK

Explanation: Field MASK is not supplied or it is

illegal.

User Response: Code the correct field mask.

EZT000-11 &WORD :MASK ID WAS

PREVIOUSLY DEFINED

Explanation: Mask-id was previously defined.

User Response: Remove duplicate definition or assign

a new Mask-ID.

EZT000-12 MAXIMUM OF NN MASK IDS

EXCEEDED

Explanation: Translator supports maximum of NN

Mask-IDS.

User Response: Resort to MASK usage to reduce the

number of Mask-IDS.

EZT000-00 • EZT000-12

232 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

EZT000-13 BWZ OPTION SPECIFIED FOR NON

NUMERIC FIELD

Explanation: None (unused message).

User Response: None.

EZT000-14 &FIELD :FIELD IS OUTSIDE OF

GROUP RANGE

Explanation: The field is a member of a group

definition but its starting position plus the length

would exceed the Group length.

User Response: Adjust the Group Field size to

accommodate your field size.

EZT000-15 &GFIELDS FIELD NAMES EXCEEDED

Explanation: The number of program fields exceeds

the number of fields specified by the FIELDS=NN of

the EASYTRAN macro (see Chapter 11, “Installation

and Migration Utility options,” on page 185).

User Response: Increase FIELDS=NN parameter on

EASYTRAN macro to accommodate your needs.

EZT000-16 COPY IS NOT SUPPORTED FOR

TABLE FILES

Explanation: A COPY was specified for an external

table file.

User Response: Migration Utility does not support

COPY for external tables. Replace COPY by an ARG

and DESC fields.

EZT000-16 INDIRECT COPY OR INCONSISTENT

FILE ATTRIBUTES

Explanation: The file referenced by the COPY was a

copy file, or its attributes are not consistent with the

attributes of the current file.

User Response: Correct the erroneous statement.

EZT000-17 MAXIMUM OF N’&PREFIX COPIES

EXCEEDED

Explanation: Number of COPY files exceeded nn.

User Response: Resort to other methods of defining

your files.

EZT000-18 &WORD FILE WAS PREVIOUSLY

DEFINED

Explanation: Duplicate file name.

User Response: Choose a unique file name.

EZT000-18 &FILE :FILE CONFLICTS WITH FIELD

NAME

Explanation: A field exists that conflicts with &FILE

name (duplicate name).

User Response: File and field names must be unique

in COBOL. Assign a unique file name and change all

references in the program to the new name.

EZT000-19 &WORD :ILLEGAL OR NON

NUMERIC STRING

Explanation: The displayed field is not numeric or the

value is not allowed by the preceding statement.

User Response: Correct the erroneous statement.

EZT000-20 &WORD :ILLEGAL OR UNDEFINED

NAME

Explanation: The displayed name is illegal or not

defined.

User Response: Correct the erroneous statement.

EZT000-21 &WORD :INVALID NUMBER OF

TABLE ROWS

Explanation: Number of external table rows is not

numeric or not supplied.

User Response: Code the proper number of table

rows.

EZT000-22 &WORD JOB STATEMENT IS NOT

SUPPORTED

Explanation: Possible causes:

v SQL was coded on the job statement

v Incomplete ″START″ or ″FINISH″ or ″NAME″ or

″ENVIRONMENT″ statements

v Unknown or illegal statement

User Response: Correct the erroneous statement.

EZT000-23 &WORD :UNDEFINED FIELD/KEY

NAME

Explanation: The specified key is undefined.

User Response: Correct the erroneous name.

EZT000-24 &WORD :ILLEGAL SORT STATEMENT

Explanation: The statement is not a legal SORT

statement.

User Response: Correct the erroneous statement.

EZT000-13 • EZT000-24

Chapter 14. Messages 233

EZT000-25 &FILE :UNDEFINED OR ILLEGAL

FILE NAME

Explanation: The displayed file is not defined or it is

illegal as coded.

User Response: Correct the erroneous statement.

EZT000-25 FILE QUALIFIER FOR

″RECORD-LENGTH″ FIELD IS

REQUIRED. EXAMPLE:

FILEIN1:RECORD-LENGTH.

Explanation: RECORD-LENGTH was coded without a

file qualifier.

User Response: Migration Utility requires a file

qualifier for the RECORD-LENGTH reserved field. Add

a file qualifier to the statement.

EZT000-25 FILE OR TABLE QUALIFIER FOR

″&FIELD″ FIELD IS REQUIRED

Explanation: The &FIELD is defined more than once

in the program. The reference to &FIELD could not be

resolved based on files found in the JOB statement.

User Response: Add a file or SQL table qualifier to

the statement.

EZT000-25 FILE OR TABLE QUALIFIER FOR

″&FIELD″ HOST VARIABLE IS

REQUIRED. EXAMPLE:

FILEIN1.&FIELD

Explanation: The &FIELD used as a host variable is

defined more than once in the program. The reference

to &FIELD could not be resolved based on files found

in the JOB statement.

User Response: Add a file or SQL table qualifier to

the statement. For example, SQLTAB.&FIELD or

FILEIN:&FIELD.

EZT000-26 &WORD :NOT ALLOWED

Explanation: The displayed option is not a valid

option for the preceding statement.

User Response: Code the correct option.

EZT000-26 &WORD :NOT ALLOWED. NUMERIC

TYPE IS REQUIRED. COBOL STATUS

IS ALPHA TYPE. CHANGE TARGET

TO ALPHA OR USE MOVE INSTEAD

OF ASSIGN.

Explanation: The &WORD is a FILE -STATUS field

being assigned to a numeric field.

User Response: In the generated COBOL, status codes

are alphanumeric 2-byte fields, while the Easytrieve

status code is numeric. You can change your target

field to an alphanumeric field, or use the MOVE

statement instead of the assign.

 This message can be avoided by running Migration

Utility with the IOCODE=EASYT option.

EZT000-27 &ZF2 :ILLEGAL ASSIGNMENT OR

INSTRUCTION

Explanation: Assignment is not allowed as written.

User Response: Correct the erroneous statement.

EZT000-28 &WORD :IF STATEMENT IS

INCOMPLETE

Explanation: More operands are expected in the IF

statement.

User Response: Make sure that the IF statement is

complete.

EZT000-29 &WORD :ILLEGAL

RELATIONAL/LOGICAL OPERATOR

Explanation: The Relational/Logical Operator is not a

valid Easytrieve Operator.

User Response: Code the correct Operator.

EZT000-30 &WORD :ILLEGAL COL/POS VALUE

Explanation: The coded value is not allowed.

User Response: Code the correct value.

EZT000-31 &WORD :EXPECTED ″KEY″ NOT

LOCATED

Explanation: The file KEY is not provided following

the DDNAME of synchronized processing definition.

User Response: Code the required parameters.

EZT000-32 CANNOT RESOLVE REPORT NAME

Explanation: A PRINT statement was issued without a

report name in a JOB that has multiple REPORT

statements without a report name.

User Response: Correct the REPORT statements by

adding a valid report name. Correct the PRINT

statement to reference a valid report.

EZT000-33 UNPAIRED END-IF OR END-DO

STATEMENT

Explanation: Too many or too few END-IF or

END-DO terminators found.

User Response: Make sure that the terminators pair

with the IF or DO statements.

EZT000-25 • EZT000-33

234 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

EZT000-34 &WORD :ILLEGAL PUT OR GET

FORMAT

Explanation: PUT or GET is incomplete or followed

by illegal parameters.

User Response: Correct the erroneous statement.

EZT000-35 PERFORM PROCEDURE IS MISSING

Explanation: A procedure name was not found

following PERFORM statement.

User Response: Code the required procedure name.

EZT000-36 ILLEGAL GO TO STATEMENT

Explanation: The statement is incomplete or improper.

User Response: Code the required parameters.

EZT000-37 &WORD :ILLEGAL POINT FORMAT

Explanation: The POINT is incomplete or followed by

illegal parameters.

User Response: Correct the erroneous statement.

EZT000-38 &WORD :ILLEGAL READ FORMAT

Explanation: The READ is incomplete or followed by

illegal parameters.

User Response: Correct the erroneous statement.

EZT000-39 &WORD :ILLEGAL WRITE FORMAT

Explanation: The WRITE is incomplete or followed by

illegal parameters.

User Response: Correct the erroneous statement.

EZT000-40 &WORD :ILLEGAL DO WHILE

FORMAT

Explanation: The DO is not followed by

WHILE/UNTIL statement.

User Response: Code WHILE or UNTIL following the

DO statement.

EZT000-41 &WORD :ILLEGAL ASSIGNMENT

Explanation: Improper assignment format.

User Response: Correct the erroneous parameter.

EZT000-42 &WORD :ILLEGAL MOVE

EXPRESSION

Explanation: The MOVE is not followed by TO, or

FILL not followed by the fill character in quotes.

User Response: Correct the erroneous statement.

EZT000-43 &WLABNAME :ILLEGAL OR

DUPLICATE PARAGRAPH

Explanation: The paragraph or procedure name is not

a valid name or it was previously defined.

User Response: Correct the erroneous statement.

EZT000-44 &LIT... :LITERAL IS ILLEGAL OR TOO

LONG (OVER 58 BYTES EXCLUDING

QUOTES)

Explanation: The HEADING literal is over 58

characters or not enclosed in quotes. &LIST is the first

20 characters of the literal.

User Response: Correct the erroneous statement.

EZT000-45 &WORD EXCEEDS nn CHARACTERS

Explanation: The field name exceeds 18 characters.

This error occurs when translator is running in

NATIVE mode.

User Response: Reduce the field name to maximum

of 16 characters.

EZT000-46 INVALID LABELS PARAMETER

COMBINATION

Explanation: Parameters combination for LABELS is

improper.

User Response: Correct the erroneous parameters.

EZT000-47 &WORD :UNSUPPORTED

EASYTRIEVE STATEMENT

Explanation: Illegal FILE parameters or RETRIEVE

WHILE was specified.

User Response: Remove RETRIEVE, it is not

supported by the translator. Correct the erroneous

parameters.

EZT000-48 CONFLICTING FILE I/O USAGE

Explanation: The file does not qualify for the specified

I/O. Possible causes:

v PUT or WRITE issued to a file open for input only

v GET or READ or POINT issued to a file defined with

CREATE option

v FILE parameters specify UPDATE and VSAM-SEQ

User Response: Correct the erroneous

parameters/statements.

EZT000-49 TITLE LENGTH EXCEEDS MAXIMUM

OF NN

Explanation: The combined length of all fields and

literals on the TITLE line exceeds the total Print Line

size.

EZT000-34 • EZT000-49

Chapter 14. Messages 235

User Response: Reduce literal and fields or increase

the SIZE parameter.

EZT000-50 LITERAL IS TOO LONG

Explanation: Literal exceeds 130 characters.

User Response: Translator supports literal up to 130

characters long. Reduce the literal.

EZT000-51 ILLEGAL SEARCH FORMAT

Explanation: SEARCH is incomplete or contains

extraneous parameters.

User Response: Correct the erroneous statement.

EZT000-52 SUMFILE &WORD IS NOT DEFINED

Explanation: The File Name specified following the

SUMFILE is not defined.

User Response: Code the correct file name.

EZT000-53 &WORD IS ILLEGAL SUM FIELD

Explanation: Undefined or non-numeric field used in

SUM.

User Response: Correct the erroneous statement.

EZT000-54 SUMFILE BUT NO CONTROL

BREAKS

Explanation: SUMFILE specified for Report that has

no Control Breaks.

User Response: Remove the SUMFILE or code at least

one Control Break.

EZT000-55 RECURSIVE USE OF ″FINAL″

Explanation: ″FINAL″ is out of sequence or previously

coded.

User Response: Correct the erroneous statement.

EZT000-56 MAXIMUM OF NN PARAGRAPHS

EXCEEDED

Explanation: The number of program paragraphs

exceeds the specified number by the MAXPROC=NN.

User Response: The number of paragraphs is

controlled via the MAXPROC=NN translator option.

See Chapter 11, “Installation and Migration Utility

options,” on page 185.

EZT000-57 &NESTCTR OF NN BRACKET LEVELS

EXCEEDED

Explanation: The translator supports maximum of 8

nested IF/DO statements.

User Response: Reduce the nest to 8 or less.

EZT000-58 ILLEGAL ARITHMETIC EXPRESSION

Explanation: The expression is incomplete.

User Response: Correct the erroneous expression.

EZT000-59 IMPROPER ″MOVE LIKE″

EXPRESSION

Explanation: Incomplete or improper MOVE LIKE

statement.

User Response: Correct the erroneous statement.

EZT000-60 &WORD IS UNDEFINED

Explanation: The &WORD field is not defined, or a

working storage (W) group field was referenced in a

MOVE LIKE statement.

User Response: Correct the erroneous statement.

EZT000-60 ″&KEY″ :KEY FOR &FILE IS

UNDEFINED

Explanation: The specified &KEY is undefined.

User Response: Correct the erroneous name.

EZT000-60 ″&KEY″ :KEY FOR &FILE1 AND

&FILE2 IS IN CONFLICT. ASSIGN

UNIQUE KEY NAMES.

Explanation: The specified &KEY is defined for two

different files.

User Response: Correct the erroneous name.

EZT000-61 &WORD :ILLEGAL CALL

EXPRESSION

Explanation: The CALL is incomplete or followed by

unknown parameters.

User Response: Correct the erroneous statement.

EZT000-62 &FIELD :AMBIGUOUS VALUE

Explanation: A value is coded for a field that contains

REDEFINE statement, directly or indirectly.

User Response: Remove the erroneous value.

EZT000-63 LABEL ″&LABEL″ IS INSIDE AN

IF/DO/CASE NEST

Explanation: Unpaired END-IF or END-DO, or

procedure was coded inside an IF/DO logic.

User Response: See “Labels inside a DO and IF pair

of statements” on page 33.

EZT000-50 • EZT000-63

236 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

EZT000-64 &SORTEXIT PROC IS UNDEFINED OR

MISPLACED

Explanation: Expecting procedure name for SORT

Exit. None found.

User Response: Correct the extraneous statement.

EZT000-65 &WORD :″&SORTEXIT.. PROC″ NOT

FOUND

Explanation: procedure name does not match the Proc

Name specified by the SORT INPUT EXIT.

User Response: Correct the procedure name.

EZT000-66 SELECT IS NOT IN ″&SORTEXIT..

PROC″ RANGE

Explanation: SELECT statement was located outside

of SORT EXIT Proc.

User Response: Remove or correct the statement.

EZT000-67 &WORD IS ILLEGAL ″STOP″ OPTION

Explanation: Unknown STOP option.

User Response: Remove the extraneous parameter.

EZT000-68 RECURSIVE USE OF REPORT EXIT

Explanation: The exit was previously specified for this

Report.

User Response: Remove the extraneous exit.

EZT000-69 &WORD OVERLAPS PREVIOUS

FIELD BY XX. MAX AVAILABLE

OVERLAP IS YY POSITIONS.

Explanation: Absolute position for the field would

cause it to overlap the previous field. This is allowed

by Easytrieve, however PEngiEZT sometimes cannot

allow the overlap due to COBOL restrictions.

User Response: XX is the number of positions that are

overlapping. YY is the maximum number of positions

that PEngiEZT was able to compensate. You can reduce

the field size or shift its location to the right, or if

possible change the mask.

 The overlap can also be caused by a long field title. The

starting position should be tuned as conditions permit.

 Caution: Any reduced field mask can cause a loss of

leading data digits. Use extreme care.

EZT000-70 &WORD ILLEGAL ADJUSTMENT

Explanation: A relative position was placed at the

beginning of print line before any fields or literals.

User Response: Remove the incorrect statement.

EZT000-71 ″SUM″ DOES NOT FOLLOW

″CONTROL″ STATEMENT

Explanation: The SUM statement is out of sequence.

User Response: The SUM must be coded following

the CONTROL statement.

EZT000-72 COBOL=&GCOBOL NOT ″COBOL390″

OR ″COBOLII″

Explanation: COBOL option is invalid.

User Response: PEngiEZT supports COBOL II and

COBOL S/390® only. Code COBOL=COBOL390 for

compatibility with COBOL/390 and later versions, or

COBOL=COBOLII for COBOL II.

EZT000-73 ELSE IS OUT OF SEQUENCE

Explanation: ELSE was found without a previous IF

statement.

User Response: Correct erroneous statement.

EZT000-74 ″&WORD″ IS ILLEGAL OR

CONFLICTING ASSIGNMENT

Explanation: One of the following problems was

detected:

v SPREAD and NOADJUST were detected in the same

REPORT.

v Too many, or too few, arguments were coded for a

logical operation.

User Response: Correct the problem.

EZT000-75 NUMBER PRINT/DISPLAY LINES

EXCEEDS NN

Explanation: The number of PRINT/DISPLAY lines

exceeds the number of lines specified by the

LINES=NN of the EASYTRAN macro (see Chapter 11,

“Installation and Migration Utility options,” on page

185).

User Response: Increase LINES=NN parameter on

EASYTRAN macro to accommodate your needs.

EZT000-76 NUMBER PRINT/DISPLAY FIELDS

EXCEEDS NN

Explanation: The number of PRINT/DISPLAY fields

exceeds the number of fields specified by the

RFIELDS=NN of the EASYTRAN macro (see

Chapter 11, “Installation and Migration Utility options,”

on page 185).

User Response: Increase RFIELDS=NN parameter on

the EASYTRAN macro to accommodate your needs.

EZT000-64 • EZT000-76

Chapter 14. Messages 237

EZT000-77 &SYSPARM BAD EASYTRIEVE

PROGRAM NAME

Explanation: The PARM=(EASYTRAN:XXXXXXXX) on

the translator EXEC is improper, or your MEMBER=

member name coded in the PROC is too long (over 8

digits).

User Response: Make sure that your member name is

1-8 characters long. The

PARM=(EASYTRAN:&MEMBER) is located in the

PROC (JCL). MAKE sure that the format of the PARM=

is correct.

EZT000-78 EASYT000 DEMO MODE. LIMIT

RECORD SIZE TO 80

Explanation: PEngiEZT is in DEMO mode.

User Response: No solution. DEMO mode allows you

to experiment with files of record length of 80 and less.

EZT000-79 EXPRESSION IS TOO LONG

Explanation: The bracketed expression exceeds the

total length allowed by the MAXSTR=NN of the

EASYTRAN macro (see Chapter 11, “Installation and

Migration Utility options,” on page 185).

User Response: Increase MAXSTR=NN parameter on

the EASYTRAN macro to accommodate your needs or

reduce the length of your expression.

EZT000-80 NUMBER OF TITLES EXCEEDS NN

Explanation: The number of TITLE lines exceeds the

number of lines allowed by the HEADERS=NN of the

EASYTRAN macro.

User Response: Increase HEADERS=NN parameter on

the EASYTRAN macro to accommodate your needs.

EZT000-81 NUMBER OF FILES EXCEEDS NN

Explanation: The number of defined files exceeds the

number allowed by the FILES=NN of the EASYTRAN

macro (see Chapter 11, “Installation and Migration

Utility options,” on page 185).

User Response: Increase FILES=NN parameter on the

EASYTRAN macro to accommodate your needs.

EZT000-82 NUMBER OF ″IF″ NESTS EXCEEDS NN

Explanation: The number of nested IF statements

exceeds the number allowed by the NESTS=NN of the

EASYTRAN macro (see Chapter 11, “Installation and

Migration Utility options,” on page 185).

User Response: Increase NESTS=NN parameter on the

EASYTRAN macro to accommodate your needs, or

reduce the number of nested IF statements by making

separate expressions.

EZT000-83 NUMBER OF MACRO PARAMETERS

EXCEEDS NN

Explanation: The number of Easytrieve macro

parameters supplied following the %NAME exceeds

the number of parameters allowed by the

MPARMS=NN of the EASYTRAN macro. This error can

occur by improper continuation or termination of the

string (a misplaced + or -). See Chapter 11,

“Installation and Migration Utility options,” on page

185.

User Response: Increase MPARMS=NN to

accommodate your needs or remove unneeded

parameters.

EZT000-84 NUMBER OF NESTED MACROS

EXCEEDS NN

Explanation: The number of nested macros triggered

by the current macro exceeds the maximum allowed by

the MNESTS=NN of the EASYTRAN macro (see

Chapter 11, “Installation and Migration Utility options,”

on page 185).

User Response: Increase MNESTS=NN to

accommodate your needs or reduce the number of

macro nests.

EZT000-85 NUMBER OF INDEX ENTRIES

EXCEEDS NN

Explanation: The number of fields using OCCURS

with INDEX exceeds the number allowed by the

INDEXS=NN of the EASYTRAN macro (see Chapter 11,

“Installation and Migration Utility options,” on page

185).

User Response: Increase INDEXS=NN to

accommodate your needs.

EZT000-86 NUMBER OF TITLE FIELDS EXCEEDS

NN

Explanation: The number of TITLE fields exceeds the

number allowed by the HFIELDS=NN of the

EASYTRAN macro (see Chapter 11, “Installation and

Migration Utility options,” on page 185).

User Response: Increase HFIELDS=NN to

accommodate your needs.

EZT000-87 NUMBER OF ″IF″ ARGUMENTS

EXCEEDS NN

Explanation: The number of arguments in the IF

statement exceeds the number of arguments allowed by

the MAXARG=NN of the EASYTRAN macro (see

Chapter 11, “Installation and Migration Utility options,”

on page 185).

User Response: Increase MAXARG=NN to

accommodate your needs.

EZT000-77 • EZT000-87

238 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

EZT000-88 NUMBER OF PROCS EXCEEDS NN

Explanation: The number of PROC declarations

exceeds the number allowed by the MAXPROC=NN of

the EASYTRAN macro (see Chapter 11, “Installation

and Migration Utility options,” on page 185).

User Response: Increase MAXPROC=NN to

accommodate your needs.

EZT000-89 NUMBER OF REPORTS EXCEEDS 99

Explanation: You have more than 99 reports in your

program.

User Response: PEngiEZT supports maximum of 99

reports in a single program. Split your program into

multiple smaller programs.

EZT000-90 &REPORT IS NOT DEFINED IN JOB

NN

Explanation: The Report Name referenced within the

previous JOB scope was not defined.

User Response: Correct the erroneous statement.

EZT000-90 &REPORT: CANNOT RESOLVE

DEFAULT PRINT.

Explanation: A PRINT without a report name was

processed but there were no reports coded without a

PRINTER file. &REPORT is the default name assigned

to that print statement.

User Response: Make sure that all PRINT and

REPORT statements are properly coded.

EZT000-91 &FIELD, ILLEGAL FIELD VALUE.

NULL LITERAL IS ILLEGAL

Explanation: The declared field value is not a proper

literal, or it is inconsistent with the field type.

User Response: Correct the erroneous literal or value.

EZT000-92 &FILE :FILE KEY IS REQUIRED

Explanation: The KEY cannot be identified for an

INDEXED file.

User Response: You must provide the KEY-NAME as

part of the file definition.

Note: The translator defaults to the first field name in

the record definition. The field must be an

alphanumeric field.

EZT000-93 &FILE:&KEY :KEY CANNOT BE

NUMERIC

Explanation: The file key is not an alphanumeric item

for an indexed file.

User Response: This is COBOL restriction. Define the

key as an alphanumeric field.

EZT000-94 &WORD :ILLEGAL RECORD/BLOCK

SIZE ASSIGNMENT

Explanation: The record size or the block size is not

numeric.

User Response: Code correct numeric value.

EZT000-95 CONFLICTING FILE REFERENCE

Explanation: Redefining object (file) does not match

the redefined field object.

User Response: Code the correct file qualifier for the

redefined object (field).

EZT000-96 FILE &FILE HAS NO ALLOCATED

STORAGE

Explanation: The computed record size for the

specified file is zero.

User Response: You must specify record length on the

FILE statement or provide a valid record layout.

EZT000-97 &FIELD :AMBIGUOUS FIELD

POSITION OR INDEX USAGE

Explanation: The field position as specified cannot be

translated, or the INDEX usage is improper.

User Response: This message can be eliminated by

rearranging field definitions. If the field in error is a

numeric field that redefines an alphanumeric field,

switch them around.

EZT000-97 &FIELD :DESTRUCTIVE OVERLAP

FOR FIELD WITH OCCURS. ADD A

GROUP FIELD DEFINITION FOR NN

CHARACTERS AFTER &GROUP

FIELD.

Explanation: The &FIELD is a part of complex group

definition with OCCURS and INDEX that overlaps

other fields in the manner that cannot be handled by

COBOL.

User Response: Rearrange or simplify the layout. For

example, FIELDA below was changed to FIELDX, and

FIELD was changed to be a 200 bytes alpha field.

FIELDA 1 200 A OCCURS 100 INDEX (INDEX1)

FIELDB FIELDA 10 A

FIELDC FIELDA +10 20 A

FIELDD FIELDA +05 10 A

EZT000-88 • EZT000-97

Chapter 14. Messages 239

 | |

 |
 |

 |
 |

When changed to the following format, the problem is

corrected.

FIELDX 1 200 A OCCURS 100 INDEX (INDEX1)

FIELDA FIELDX 200 A

FIELDB FIELDA 10 A

FIELDC FIELDA +10 20 A

FIELDD FIELDA +05 10 A

EZT000-98 &FIELD :DUPLICATE WORKING

STORAGE FIELD

Explanation: Field was previously defined.

User Response: Rename the field in question.

EZT000-99 NN :ADJUSTMENT EXCEEDS

MAXIMUM SPACE OF &SPACE

Explanation: The specified adjustment exceeds the

specified maximum allowed by the SPACE NN report

parameter.

User Response: Code the adjustment.

EZT000-9A &FIELD IN TITLE NN OVERLAPS

PREVIOUS FIELD

Explanation: The field or literal shown cannot fit in

the available space.

User Response: Code the field position or column.

EZT000-9B NN: TITLE/LINE NN IS OUT OF

SEQUENCE OR ILLEGAL AS

SPECIFIED

Explanation: The TITLE or LINE is out of position or

the number is out of sequence.

User Response: Correct the problem.

EZT000-9C ″VARYING″ USED FOR NUMERIC

FIELD OR A TABLE ITEM

Explanation: VARYING fields can be only

alphanumeric fields and non-table item.

User Response: Correct the problem.

EZT000-9D ″VARYING″ FIELD LENGTH MUST BE

GREATER THAN 2

Explanation: The length specified for a VARYING

field is less than 3.

User Response: Correct the problem.

EZT000-9E FIELD LENGTHS ARE NOT EQUAL IN

LOGICAL EXPRESSION

Explanation: A logical ″AND″, ″OR″, ″XOR″ operate

on fields of equal length but the specified field

arguments are of unequal length.

User Response: Correct the problem.

EZT000-9F COMPLEX ″ON″ EXPRESSION IS NOT

SUPPORTED

Explanation: An IF Bit Test for ″ON″ was coded with

multiple arguments/expressions.

User Response: The ″ON″ condition in IF must be

coded as a single argument in expression.

EZT000-9G &FIELD: LENGTH OF PACKED

UNSIGNED FIELD EXCEEDS 15

Explanation: The length of a PU field exceeds 15

bytes. COBOL cannot handle it.

User Response: Limit PU fields to maximum of 15

bytes.

EZT000-9H ″&WORD″ HEX NUMBERS FOUND IN

ARITHMETIC

Explanation: A hex number was found in an

arithmetic expression.

User Response: Correct the problem.

EZT000-9I &OBJECT: TABLE REQUIRES AT

LEAST TWO FIELDS

Explanation: The number of fields defined for the

table is less than two.

User Response: Easytrieve Plus tables must have two

fields, ARG and DESC.

EZT000-9J &OBJECT: ″ENDTABLE″ IS MISSING

Explanation: The ″ENDTABLE″ could not be located

following table data items. This can also be caused by

unpaired quotes in a data string.

User Response: Check for ENDTABLE, make sure that

quoted strings start and end with a quote.

EZT000-9K &OBJECT: ILLEGAL INPUT FILE

(TABLES CANNOT BE SORTED)

Explanation: SORT was specified for a table file.

User Response: Easytrieve Plus tables cannot be

sorted. Resort to external file techniques.

EZT000-9L &OBJECT: REPORT WAS PREVIOUSLY

DEFINED

Explanation: Duplicate report name.

User Response: Make report names unique.

EZT000-98 • EZT000-9L

240 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

EZT000-9M TABLE DATA ITEM(S) ARE NOT A

VALID COBOL LITERAL

Explanation: The value in the table is not a valid

COBOL Literal.

User Response: Change the value to be a valid

COBOL Literal.

EZT000-9N &FIELD: DUPLICATE FIELD NAME

Explanation: Duplicate field name in the SUM list.

User Response: Remove the duplicate field.

EZT000-9O &WORD: TABLE ARG IS OUT OF

SEQUENCE

Explanation: Table data element is out of sequence.

User Response: Make sure that the data elements are

in sequence.

EZT000-9P &JOBFILE: NOT A VALID FILE

Explanation: The file in error is a table.

User Response: Tables cannot be used in

Synchronized File processing. Correct the statement.

EZT000-9Q COBOL LEVEL &FLEVL FOR &FIELD

EXCEEDS NNN

Explanation: Number of nested groups (field levels)

exceeds maximum allowed.

User Response: Simplify the record layout.

EZT000-9R UNPAIRED END-CASE STATEMENT

Explanation: Extraneous END-CASE was detected.

User Response: Make sure that CASE - END-CASE

are properly paired.

EZT000-9S ″CASE″ NOT IMMEDIATELY

FOLLOWED BY ″WHEN″

Explanation: CASE statement syntax error.

User Response: Code WHEN statement immediately

after the CASE.

EZT000-9T ″&WORD″ CANNOT BE USED IN

THIS CONTEXT

Explanation: Syntax error was detected in CASE or

WHEN statement.

User Response: CASE must be followed by a data

field name. WHEN cannot be followed by a data field

name or an arithmetic expression. See “CASE, WHEN,

OTHERWISE and END-CASE statements” on page 76

or the Easytrieve Plus reference manual for more rules.

EZT000-9U ″&WORD″ TYPE IS INCOMPATIBLE

WITH COMPARE ARG

Explanation: Syntax error was detected in WHEN

statement or statement is not supported as written.

User Response: See “CASE, WHEN, OTHERWISE and

END-CASE statements” on page 76 or the Easytrieve

Plus reference manual for proper rules.

EZT000-9V &FIELD: NUMERIC GROUP WITH

OCCURS IS NOT SUPPORTED

Explanation: A numeric field with OCCURS was

coded as a group item.

User Response: Simplify the definition. For example,

you can define an alpha field with occurs and make the

numeric field subordinate to the alpha field.

EZT000-9X &WORD: NUMBER OF REPORT

LITERALS EXCEEDS NNN

Explanation: Number of report constants (literals)

exceeds maximum allowed.

User Response: Increase FIELDS=NNN value in the

EZPARAMS.

EZT000-9Y :&FIELD SQL HOST VARIABLE IS

UNDEFINED

Explanation: The &FIELD is undefined.

User Response: Code the correct field name.

EZT000-9Y :&WORD SQL HOST VARIABLE IS

NOT IN &FILE RECORD

Explanation: The host variable is undefined.

User Response: Use a valid, defined field.

EZT000-9Z ″WHEN″ IS OUTSIDE OF ″CASE″

SCOPE

Explanation: ″WHEN″ statement was detected outside

of CASE - END-CASE scope.

User Response: Correct the problem.

EZT000-A1 &FIELD: CANNOT SORT ON FIELD

WITH OCCURS

Explanation: &FIELD was defined with OCCURS.

User Response: Fields defined with OCCURS cannot

be sorted on. Correct the statement. If you must sort on

a field with OCCURS, adjust the layout such that the

same record segment can be accessed via a field

without OCCURS.

EZT000-9M • EZT000-A1

Chapter 14. Messages 241

EZT000-A2 &JOBID ″JOB INPUT SQL″ BUT NO

VALID SELECT FOUND

Explanation: SELECT was not located for this JOB.

User Response: Code a SELECT as required by

Easytrieve Plus.

EZT000-A3 IMPROPER NUMBER OF DCLINCL

PARAMETERS

Explanation: Too few or extraneous parameters were

detected in ″SQL DCLINCL″.

User Response: See Chapter 6, “SQL/DB2 support,”

on page 107 for proper syntax.

EZT000-A4 TABLE NAME FOR SQL FILE IS

MISSING

Explanation: The file was declared as an SQL file but

there were not SQL Tables associated with it.

User Response: See Chapter 6, “SQL/DB2 support,”

on page 107 for proper FILE syntax.

EZT000-A6 &WORD: TABLE NAME FOR SQL

INCLUDE IS NOT CODED

Explanation: Easytrieve Plus ″SQL INCLUDE″ was

coded without the proper ″FROM &TABLE″ statement.

User Response: Correct the problem.

EZT000-A7 &SQLTABL: UNDEFINED TABLE OR

NOT IN DCLINCL

Explanation: &SQLTABLE column or field definitions

cannot be resolved.

User Response: Make sure that the table is defined in

one of the ″SQL DCLINCL &NAME″ declares and that

there is an ″SQL INCLUDE ″ coded in working

storage or an SQL File. Note that &SQLTABLE field

name must be 01 level COBOL definition coded in the

DCLGEN copybook which is included via ″SQL

DCLINCL″.

EZT000-A8 &FILE: SQL FILE IN SYNCHRONIZED

PROCESS

Explanation: &FILE is an SQL file.

User Response: Files declared as SQL files cannot be

used in synchronized file processing.

EZT000-A9 &FILE: EXCEEDS 26 TABLES OR

STATEMENT DOES NOT SUPPORT

MULTIPLE TABLES

Explanation: Maximum number of SQL tables in a

single SQL statement has been exceeded, or multiple

tables have been coded for SQL statement that does not

operate on multiple tables.

User Response: Correct the problem.

EZT000-AA &SQLTABL: DUPLICATE SQL TABLE

IN FILE DEFINITION

Explanation: Duplicate SQL Table name.

User Response: Remove the duplicate table.

EZT000-AB %COBOL CANNOT BE INSIDE DO/IF

STATEMENT.

Explanation: Illegally placed %COBOL Statement.

User Response: Place %COBOL outside of IF/DO

nest.

EZT000-AC &WORD :UNDEFINED FILE / NOT AN

SQL FILE

Explanation: An SQL request was coded for a file that

was not defined as an SQL file.

User Response: Correct the problem.

EZT000-AD &WORD :CONFLICT IN SQL FILE

USAGE JOB/&EASYFUN

Explanation: A FETCH was coded for SQL file that

has been used on the JOB statement.

User Response: Refer to Easytrieve Plus reference

manual for proper SQL file usage.

EZT000-AE &WORD :FILE NOT CODED FOR

UPDATE/NO UPDATE COLUMNS

Explanation: Update was specified for SQL File that

has not been coded for UPDATE, or no update columns

exist.

User Response: Correct the problem. Refer to

Easytrieve Plus reference manual for SQL File Update

rules.

EZT000-AF SELECT FOR ″JOB INPUT SQL″

WITHOUT ″INTO″

Explanation: No INTO specified for SELECT or INTO

is out of place.

User Response: Select coded for ″JOB INPUT SQL″

requires ″INTO″ statement. Refer to Easytrieve Plus

reference manual.

EZT000-AG ″UPDATE″ SYNTAX ERROR OR

CONFLICTING WITH ″ORDER″

Explanation: UPDATE and ORDER specified on the

same SQL Statement.

EZT000-A2 • EZT000-AG

242 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

User Response: DB2 does not support ORDER and

UPDATE concurrently. Refer to SQL reference for

proper rules.

EZT000-AH ″&WORD″ CANNOT RESOLVE TABLE

NAME

Explanation: ″FROM″ was coded without a table.

User Response: Provide a table name following the

FROM statement.

EZT000-AI &WORD ″NULL″ USED FOR

NON-NULLABLE FIELD

Explanation: IF NULL was specified for a

non-nullable column or field.

User Response: Correct the problem.

EZT000-AJ MULTIPLE EZT STATEMENTS FOUND

ON JOB LINE. CORRECT IT BY

CODING ONE STATEMENT PER LINE.

Explanation: JOB statement was terminated with a

period and followed by another Easytrieve statement

on the same line.

User Response: Correct the problem.

EZT000-AK UNSUPPORTED ″SELECT″

EXPRESSION SYNTAX. FILE

PARAMETERS CANNOT BE CODED

ON THE SAME LINE.

Explanation: SELECT statement follows SQL file

definition, but the SELECT line, or the last line

belonging to the SELECT contains other file options.

User Response: Code other parameters on separate

line(s).

EZT000-AL SUBSCRIPT/INDEX ″&WSUBWRD″

DISALLOWED BECAUSE OF

PERFORMANCE REASONS.

Explanation: U, BL1 and BL3 fields are disallowed in

INDEX for performance reasons.

User Response: Create a BL4 field, move the

disallowed index into it and use it as subscript, or use

the SSOMDE=GEN option to eliminate this message.

EZT000-AM &ESIZE: DBCS FIELD SIZE IS NOT

MULTIPLES OF TWO.

Explanation: K type field length is not multiple of

two.

User Response: Correct the problem.

EZT000-AN &MACELIA: MULTI COPYBOOK FOR

OBJECT NOT UNIQUE.

Explanation: A macro was coded with the same prefix

more than one time for the same object/file.

User Response: Correct the problem.

EZT000-AO &OBJECT: LAYOUT IS TOO COMPLEX

FOR COPYBOOK=YES

Explanation: The layout is composed of one or more

macros and hard-coded field definitions.

User Response: When COPYBOOK=YES is coded, the

layouts must be fully defined within one or more

macros, or hard-coded field definitions only. You

cannot have a mixture of hard-coded fields and macros

because the hard-coded definitions will not be found in

the copybook. Either hard code all fields or defined all

fields in the macros. Another way of solving this

problem is to remove the macro from the EZTABLE0

list.

EZT000-AP &MACELIA: NUMBER OF

COPYBOOKS EXCEEDS &GNCOPIES

Explanation: Number of allowed Easytrieve Plus

macros has been exceeded.

User Response: Increase the number of allowed

macros via NCOPIES= in EZPARAMS.

EZT000-AQ &FORIG: CANNOT REDUCE THE

FIELD NAME TO 18 CHARS.

SIMPLIFY ″&PFXELIA″ PREFIX.

Explanation: The field in question is located in a

macro that was coded with a long prefix, or the macro

was used multiple times, and the additional prefix

assigned to it resulted in a long field name.

User Response: Code macro with a shorter prefix or a

unique prefix. The prefix should be one character

followed by a dash.

 If you must, drop the dash. Remember to change all

field names in your program to reflect the new prefix.

EZT000-AR &WPROCNAM PROC: NO

MATCHING ″END-PROC″ FOUND

Explanation: Missing END-PROC.

User Response: Correct the problem.

EZT000-AS &arg1 .. &ARGN :INCOMPATIBLE

CLASS.

Explanation: Compare arguments are not compatible,

that is, you are comparing a numeric field with an

alphanumeric field. Solution: Correct the problem.

EZT000-AH • EZT000-AS

Chapter 14. Messages 243

|
|

EZT000-AT &FMASK: MASK DOES NOT MATCH

FIELD SIZE OF &FSIZE

Explanation: The number of digits represented by

&FMASK does not match the number of digits

represented by the field.

User Response: Correct the problem.

EZT000-AU &SUBSCRIPT :SUBSCRIPT IS NOT

ALLOWED

Explanation: A subscript was coded for a field

without OCCURS.

User Response: Correct the problem.

EZT000-AV &FIELD :FIELD W/OCCURS -

SUBSCRIPT IS REQUIRED

Explanation: &FIELD requires a subscript.

User Response: Correct the problem.

EZT000-AW &WORD :ILLEGAL SUBSCRIPT

ARGUMENT

Explanation: &WORD is not a valid subscript.

User Response: Correct the problem. Subscript must

be a numeric field or literal.

EZT000-AX &FIELD :FIELD REQUIRES N

LEVEL(S) OF SUBSCRIPTS

Explanation: The number of coded subscripts does not

match the number of required subscripts for this field.

User Response: Provide the correct number of

subscripts. The number of required subscripts is the

number of OCCURS statements for all groups that the

field belongs to, including the OCCURS for the field in

question, if coded.

EZT000-AY &FIELD :VALUE STRING LENGTH

EXCEEDS 160 BYTES

Explanation: The VALUE string exceeds 160 bytes in

length.

User Response: If your string contains repeating

characters, consider defining the field using VALUE

ALL │&VAL└. Otherwise, initialize the field in the

Activity Section.

EZT000-AZ ″&WORD″ IS A COBOL RESERVED

VERB. RENAME IT AND CHANGE

ALL REFERENCES TO NEW NAME.

Explanation: The &WORD conflicts with COBOL

Reserved Verbs.

User Response: The &WORD must be renamed in

your Easytrieve Program to a non-conflicting name. All

references in your program to &WORD must be

changed too.

EZT000-B1 LENGTH OF ASSUMED KEY ″&KEY″

EXCEEDS COBOL LIMIT OF 255

BYTES.

Explanation: Wrong VSAM file key definition.

User Response: The key of VSAM files is assumed to

be the first defined field in record definition if not

supplied in the FILE statement via the (KEY &KEY)

definition. Make sure that you specify the correct key.

EZT000-B2 DECLARED KEY &KEY″ FOR

RELATIVE &FILE FILE IS NOT

DEFINED A ″W 4 B″ FIELD.

Explanation: Wrong RELATIVE VSAM file key

definition or the declared key is not defined.

User Response: The key for relative VSAM files must

be a 4-byte binary field defined in working storage. The

key must be defined before the FILE statements and it

must be a 4-byte binary field.

EZT000-B3 DBD-NAME/SUBSCHEMA-NAME IS

MISSING.

Explanation: DLI DBD-NAME is not supplied.

User Response: Code DBD-NAME/SUBSCH

EMA-NAME as required for DLI files.

EZT000-B4 &MACRO IS NOT ALLOWED FOR

DLI/IDMS.

Explanation: The default I/O macro &MACRO does

not support DLI/IDMS files.

User Response: Currently, Migration Utility does not

support DLI and IDMS. The only way around it is to

create a custom I/O macro.

EZT000-B5 DECLARED KEY ″&KEY″ FOR PDS

&FILE FILE IS NOT AN ALPHA FIELD,

OR ITS DECLARED SIZE IS LESS

THAN 8 BYTES.

Explanation: Bad &KEY field name or definition.

User Response: PDS file key must be an alphanumeric

field and at least 8 bytes long.

EZT000-B6 INCONSISTENT NUMBER OF

MACRO PARAMETERS

Explanation: The number of supplied macro

parameters is wrong.

User Response: Refer to specific macro coding

conventions in this manual.

EZT000-AT • EZT000-B6

244 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

EZT000-B7 DATE MASK ″&MASK″ IS NOT

SUPPORTED

Explanation: The supplied date mask is not supported

by Migration Utility.

User Response: For supported masks, see “Available

date masks” on page 217.

EZT000-B8 REFERENCE TO &FILE &FIELD

UNAVAILABLE

Explanation: The &FIELD reference was found within

the JOB Activity that belongs to &FILE file, but the

&FILE file was not present within the same JOB

activity.

User Response: Correct the erroneous statement.

EZT000-B9 NNN LRECL VALUE NOT 0 OR > 4

Explanation: The declared record length for a variable

file is invalid.

User Response: A variable-length file record length

must include 4 extra bytes. If you are running with

IOMODE=DYNAM, set the record length to 0;

otherwise, code the correct record length that includes

4 extra bytes.

EZT000-BA BIT OPERATION IN REPORT EXITS

NOT SUPPORTED

Explanation: One of the following problems was

detected:

v Logical ON/OFF was detected in report exit.

v Logical operation XOR, AND, OR was detected in

report exit.

v HEX number was used in report exit on numeric

field.

User Response: Correct the problem. For logical

operation in report exit, use other means of conducting

the same test.

EZT000-BC SQL/SELECT STATEMENT MUST

BEGIN ON A SEPARATE LINE

Explanation: SQL or SELECT is preceded by another

statement on the same line.

User Response: SQL and SELECT statements must

begin on a separate line due to syntax differences.

Make sure that SQL/SELECT is not preceded by any

other statements on the same line.

EZT000-BD &FILE RECORD LENGTH OF &SIZE

EXCEEDS 32767

Explanation: The computed record length is over the

system limit.

User Response: Adjust record length to proper size.

EZT000-BE &FILE :INCONSISTENT NUMBER OF

MATCH KEYS

Explanation: The number of keys for &FILE does not

match the number of keys coded for the first

synchronized file.

User Response: Code the proper number of match

keys.

EZT000-BF REQUIRED ″CONTROL″ NOT CODED

ON REPORT STATEMENT

Explanation: BEFORE-BREAK or AFTER-BREAK

report exit was coded for a report without CONTROL

statement.

User Response: Report exits can be used for reports

with CONTROL statement only. Add a CONTROL

statement or remove the exits.

EZT000-BG &FIELD :ILLEGAL FIELD CLASS

Explanation: The field &FIELD is not of the correct

type/class for this instruction. For example, numeric vs

alphanumeric.

User Response: Use a field of the correct type.

EZT000-BI MASK TARGET FIELD CANNOT BE

NUMERIC

Explanation: Target field of MOVE with MASK option

is not alphanumeric (A field), or the field cannot be a

target of MOVE with MASK.

User Response: Use alphanumeric field as target in

MOVE.

EZT000-BJ ″&WSEG″ :RECURSIVE SEGMENT IN

SELECT STATEMENT

Explanation: &WSEG was previously specified in the

same RETRIEVE statement.

User Response: Remove the duplicate name.

EZT000-BK ″&WSEG″ :SELECTION OF PARENT

″&CURPATH″ IS REQUIRED

Explanation: &WSEG segment was specified in the

RETRIEVE statement but its parent (root) &CURPATH

segment was not.

User Response: Child segments cannot be accessed

without the parent segment. Add the parent segment to

the RETRIEVE to fulfill the requirements.

EZT000-B7 • EZT000-BK

Chapter 14. Messages 245

EZT000-BL REQUIRED ″SELECT″ IS MISSING

FROM RETRIEVE

Explanation: A RETRIEVE was coded without

SELECT.

User Response: Add SELECT statements as per

RETRIEVE statement syntax rules.

EZT000-BM SSA AND TICKLER FILE USAGE

CONFLICT

Explanation: You have specified a KEYFILE and SSA

for the root segment in RETRIEVE.

User Response: The KEYFILE and SSA are mutually

exclusive. Only one option can be used at a time.

EZT000-C1 &FILE: EXIT IS NOT ALLOWED

Explanation: ″EXIT″ option was specified for a file

organization that does not support I/O exit.

User Response: Remove the EXIT statement or change

file organization to comply with the file EXIT rules.

EZT000-C2 &FILE: MODIFY OPTION REQUIRES

WORKAREA

Explanation: ″MODIFY″ option was specified but

there was no work area coded.

User Response: CODE WORKAREA NNNN

following the MODIFY statement. Refer to FILE

statement coding rules.

EZT000-C3 “DRILL MENU” STATEMENT IS

MISSING

Explanation: REPORT <DOC> was coded but no

DRILL MENU was supplied.

User Response: See Chapter 9, “Creating HTML and

spreadsheet files,” on page 137 for coding conventions.

EZT000-C4 “DRILL DOWN” STATEMENT IS

MISSING

Explanation: REPORT <DOC> was coded but no

DRILL DOWN was supplied.

User Response: See Chapter 9, “Creating HTML and

spreadsheet files,” on page 137 for coding conventions.

EZT000-C5 “&field” DOES NOT MATCH DRILL

DOWN FIELD

Explanation: The CONTROL field does not match the

field named on the DRILL DOWN statement for this

report.

User Response: Correct the field name to match that

of the DRILL DOWN statement.

EZT000-C6 “PARM BIND(DYNAMIC)”

CONFLICTS WITH SQLMODE=BIND.

CAF FACILITY IS REQUIRED FOR

DYNAMIC MODE. ADJUST

SQLMODE= TO USE A CAF

PROGRAM NAME.

Explanation: BIND(DYNAMIC) requires

SQLMODE=FSYDB250.

User Response: Correct SQLMODE= parameter. If

SQLMODE=BIND is coded as a default in EZPARAMS,

and you wish to use Dynamic SQL mode, add

SQLMODE=FSYDB250 to your Easytrieve Plus program

using EASYTRAN syntax.

EZT000-C7 “&GSEP” SEPERATOR MUST BE

ENCLOSED IN QUOTES

Explanation: The SEP=(&GSEP) syntax error.

User Response: Enclose “&GSEP” in quotes. For

example: SEP=(’,’)

EZT000-C8 DOCTYPE=&QDOCTYPE REQUIRES

“CONTROL DETAIL”

Explanation: The report was declared as a DETAIL

report on the DRILL DOWN statement.

User Response: Code CONTROL DETAIL for this

report.

EZT000-BL • EZT000-C8

246 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

||
|

|
|

|
|

||
|

|
|

|
|

||
|

|
|
|

|
|

 | |
 |
 |
 |
 |
 |

 |
 |

 |
 |
 |
 |
 |

 | |
 |

 |

 |
 |

 | |
 |

 |
 |

 |
 |

Dynamic SQL Translator macro generated messages

DYNCPY-01 XXXXX IS AN INVALID AREA GROUP

NAME

Explanation: The AREA= object name is not a valid

COBOL field name.

User Response: Object names can be 1-30 characters

long and must follow COBOL field-naming

conventions.

DYNCPY-02 XXXXX IS ILLEGAL LEVEL NUMBER

Explanation: An invalid COBOL field level number

has been detected.

User Response: Valid level numbers are 01-99.

DYNCPY-03 XXXXX IS AN ILLEGAL FIELD NAME

Explanation: An invalid COBOL field name has been

detected.

User Response: Field names can be 1-30 characters

long and must follow COBOL field-naming

conventions.

DYNCPY-04 ILLEGAL COBOL PICTURE

Explanation: An invalid COBOL field picture has been

detected.

User Response: Code a valid COBOL field picture.

DYNCPY-05 COPY IS IMPROPER AS WRITTEN

Explanation: An improperly coded COPY was

detected.

User Response: Refer to COPY statement format in

the COBOL reference manual. A copybook name can be

1-8 characters long.

DYNCPY-06 TOO MANY REPLACING

IDENTIFIERS

Explanation: More than the maximum number of 256

ordered REPLACING statements was detected.

User Response: Reduce the number of REPLACING

pairs to less than 256.

DYNCPY-07 FIELD DEFINITION IS INCOMPLETE

Explanation: The definition of the last field on the

copybook is not complete.

User Response: Correct the problem.

DYNCPY-08 XXXXX FIELD IS UNDEFINED OR

LEVELS ARE INCONSISTENT IN

REDEFINES EXPRESSION

Explanation: The redefined field is undefined or the

level numbers of the redefined and redefining fields are

inconsistent.

User Response: Correct the problem.

DYNCPY-09 Text1 Text2 Text3; INVALID

REPLACING OPTION

Explanation: An improperly coded COPY

REPLACING was detected.

User Response: Refer to COPY statement format in

the COBOL reference manual.

DYNCPY-10 Text1 Text2 Text3 Text4; RECURSIVE

USE OF PSEUDO TEXT

Explanation: Multiple pairs of pseudo text has been

detected.

User Response: DYNAMSQL translator allows only

one ordered pair of pseudo text replacement. Delete

extra statements.

DYNCPY-11 INCONSISTENT LEVEL FOLLOWING

A GROUP ITEM

Explanation: A group field was not followed by a

field of higher level number.

User Response: Correct the problem.

DYNCPY-13 RECURSIVE 01 LEVEL INSIDE COPY

Explanation: Multiple 01 levels were detected in the

copybook.

User Response: Remove extraneous 01 levels.

DYNCPY-14 LENGTH OF REDEFINED FIELD

XXXXX IS INCONSISTENT

Explanation: The length of the redefined field is not

equal to the length of the redefining field.

User Response: Correct the problem.

DYNCPY-15 XXXXX: IS AN ILLEGAL COBOL FIELD

NAME

Explanation: An invalid COBOL field name has been

detected.

User Response: Field names can be 1-30 characters

long and must follow COBOL field-naming

conventions.

DYNCPY-01 • DYNCPY-15

Chapter 14. Messages 247

|
|
||
|

|
|

|
|
|

|
||

|
|

|

|
||

|
|

|
|
|

|
||

|
|

|

|
||

|
|

|
|
|

|
||
|

|
|

|
|

|
||

|
|

|

 |
 | |
 |
 |

 |
 |
 |

 |

 |
 | |
 |

 |
 |

 |
 |

 |
 | |
 |

 |
 |

 |
 |
 |

 |
 | |
 |

 |
 |

 |

 |
 | |

 |
 |

 |

 |
 | |
 |

 |
 |

 |

 |
 | |
 |

 |
 |

 |
 |
 |

DYNCPY-16 ″RENAMES″ IS NOT SUPPORTED,

USE REDEFINES

Explanation: RENAMES was detected in the

copybook.

User Response: PEngi does not support RENAMES.

The alternative is to use REDEFINES.

DYNCPY-20 &WFIELD: MAX OF N’&GFLDSQUE

FIELDS EXCEED. INCREASE

FIELDS=NNN ON DYNAMBAS

MACRO

Explanation: COBOL fields queue has been exceeded.

User Response: Increase FIELDS=NNN on

DYNAMBAS macro located in SQLPARMS member.

DYNCPY-21 XXXX: OCCURS VALUE IS NOT

NUMERIC

Explanation: The OCCURS value is not numeric.

User Response: Code a numeric value for OCCURS.

DYNFQU-02 XXXXX IS ILLEGAL LEVEL NUMBER

Explanation: An invalid COBOL field level number

has been detected.

User Response: Valid level numbers are 01-99.

DYNFQU-03 XXXXX IS AN ILLEGAL FIELD NAME

Explanation: An invalid COBOL field name has been

detected.

User Response: Field names can be 1-30 characters

long and must follow COBOL field-naming

conventions.

DYNFQU-04 ILLEGAL COBOL PICTURE

Explanation: An invalid COBOL field picture has been

detected.

User Response: Code a valid COBOL field picture.

DYNFQU-07 FIELD DEFINITION IS INCOMPLETE

Explanation: The definition of the last field in the

group is not complete.

User Response: Correct the problem.

DYNFQU-08 XXXXX FIELD IS UNDEFINED OR

LEVELS ARE INCONSISTENT IN

REDEFINES EXPRESSION

Explanation: The redefined field is undefined, or the

level number of the redefined and redefining fields are

inconsistent.

User Response: Correct the problem.

DYNFQU-11 INCONSISTENT LEVEL FOLLOWING

A GROUP ITEM

Explanation: A group field was not followed by a

field of higher level number.

User Response: Correct the problem.

DYNFQU-13 RECURSIVE 01 LEVEL INSIDE COPY

Explanation: Improper 01 level was detected.

User Response: Remove extraneous 01 levels.

DYNFQU-15 XXXXX: IS AN ILLEGAL COBOL FIELD

NAME

Explanation: An invalid COBOL field name has been

detected.

User Response: Field names can be 1-30 characters

long and must follow COBOL field-naming

conventions.

DYNFQU-16 ″RENAMES″ IS NOT SUPPORTED,

USE REDEFINES

Explanation: RENAMES was detected in the

copybook.

User Response: PEngi does not support RENAMES.

The alternative is to use REDEFINES.

DYNFQU-20 &WFIELD: MAX OF N’&GFLDSQUE

FIELDS EXCEED. INCREASE

FIELDS=NNN ON DYNAMBAS

MACRO

Explanation: COBOL fields queue has been exceeded.

User Response: Increase FIELDS=NNN on

DYNAMBAS macro located in SQLPARMS member.

DYNCPY-21 XXXX: OCCURS VALUE IS NOT

NUMERIC

Explanation: The OCCURS value is not numeric.

User Response: Code a numeric value for OCCURS.

DYNFQU-22 INCOMPLETE COPY STATEMENT

Explanation: COPY was detected without any

arguments.

User Response: Correct the erroneous COPY.

DYNCPY-16 • DYNFQU-22

248 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

|
||
|

|
|

|
|

|
||
|
|
|

|

|
|

|
||
|

|

|

|
||

|
|

|

|
||

|
|

|
|
|

|
||

|
|

|

|
||

|
|

|

|
||
|
|

|
|
|

 |

 |
 | |
 |

 |
 |

 |

 |
 | |

 |

 |

 |
 | |
 |

 |
 |

 |
 |
 |

 |
 | |
 |

 |
 |

 |
 |

 |
 | |
 |
 |
 |

 |

 |
 |

 |
 | |
 |

 |

 |

 |
 | |

 |
 |

 |

 |
 |
 |

DYNFQU-22 ″END-EXEC″ statement is missing

Explanation: “EXEC SQL” was not ended with

“END-EXEC”.

User Response: Add “END-EXEC” to the statement.

DYNSQL-01 “&SYSPARM” - INVALID SYSPARM

STATEMENT

Explanation: SYSPARM on EXEC statement is not

(DYNAMSQL:&pgmname,. .)

User Response: Verify your program name. Program

name can be 1-8 characters long.

DYNSQL-02 &name - MEMBER NOT LOCATED

Explanation: SYSIN cannot be opened.

User Response: Make sure that you are pointing to a

valid program in a PDS or a QSAM 80-byte record file.

DYNSQL-03 INCOMPLETE “EXEC SQL”

STATEMENT

Explanation: END-EXEC statement is missing, or

premature EOF.

User Response: Add END-EXEC as needed.

DYNSQL-04 “&field” NOT PRECEDED BY A “:”

Explanation: Host variable is expected.

User Response: Verify SQL statements. Code a “:”

before host variables.

DYNSQL-05 “&word” STATEMENT IS MISSING

Explanation: The “&word” statement is expected but

not located.

User Response: Code the required statement.

DYNSQL-05 “END-EXEC” STATEMENT IS

MISSING

Explanation: “EXEC SQL” was not ended with

“END-EXEC”.

User Response: Add “END-EXEC” to the statement.

DYNSQL-06 “&curs” MAXIMUM OF

N’&GCURSORS EXCEEDED.

INCREASE OBJECTS=NN IN

SQLPARMS TABLE

Explanation: Cursors queue has been exceeded.

User Response: Increase OBJECTS=NNN on

DYNAMBAS macro located in SQLPARMS member.

DYNSQL-07 “&curs” CURSOR HAS NOT BEEN

DECLARED

Explanation: The “&curs” cursor is not declared.

User Response: Declare the cursor in question.

DYNSQL-08 “&field” UNDEFINED HOST

VARIABLE

Explanation: The host variable was not defined as a

field name.

User Response: Define the required field.

DYNSQL-09 “&field: &type” UNABLE TO RESOLVE

FIELD TYPE

Explanation: The field type cannot be resolved.

User Response: Report this problem to the IBM

support center.

DYNSQL-10 “SELECT” WITHOUT DECLARED

CURSOR IS NOT SUPPORTED

Explanation: Unsupported SELECT statement.

User Response: Resort to other available methods.

DYNSQL-11 “&word” IS NOT SUPPORTED IN

DYNAMC MODE

Explanation: The “&word” is not supported by

Dynamic SQL.

User Response: Resort to other available methods.

DYNSQL-12 “&cursor” NAME IS TOO LONG.

MAXIMUM IS 18 CHARACTERS.

Explanation: The cursor name exceeds the allowable

DB2 cursor size.

User Response: Reduce the cursor name to 18

characters or less.

DYNFQU-22 • DYNSQL-12

Chapter 14. Messages 249

|
||

|
|

|

|
||
|

|
|

|
|

|
||

|

|
|

|
||
|

|
|

|

|
||

|

|
|

|
||

|
|

|

|
||
|

|
|

|

|
||
|
|
|

|

|
|

|

 |
 | |
 |

 |

 |

 |
 | |
 |

 |
 |

 |

 |
 | |
 |

 |

 |
 |

 |
 | |
 |

 |

 |

 |
 | |
 |

 |
 |

 |

 |
 | |
 |

 |
 |

 |
 |

Migration Utility macro generated messages

BCPY-01 XXXXX IS AN INVALID AREA GROUP

NAME

Explanation: The AREA= object name is not a valid

COBOL field name.

User Response: Object names can be 1-16 characters

long and must follow COBOL Field naming

conventions.

BCPY-02 XXXXX IS ILLEGAL LEVEL NUMBER

Explanation: An invalid COBOL field level number

has been detected.

User Response: Valid level numbers are 01-99.

BCPY-03 XXXXX IS AN ILLEGAL FIELD NAME

Explanation: An invalid COBOL field name has been

detected.

User Response: Field names can be 1-30 characters

long and must follow COBOL Field naming

conventions.

BCPY-04 ILLEGAL COBOL PICTURE

Explanation: An invalid COBOL field picture has been

detected.

User Response: Code a valid COBOL field picture.

Note that edit COBOL pictures are not allowed in the

record definitions.

BCPY-05 COPY IS IMPROPER AS WRITTEN

Explanation: An improperly coded COPY was

detected in the DEFINE macro.

User Response: Refer to Appendix A of

PEngiBAT/PEngiONL manual for allowed COPY

statement formats.

BCPY-06 TOO MANY REPLACING

IDENTIFIERS

Explanation: The maximum number of 256 ordered

REPLACING statements was detected.

User Response: Reduce the number of REPLACING

pairs to less than 256.

BCPY-07 FIELD DEFINITION IS INCOMPLETE

Explanation: The definition of the last field on the

copybook is not complete.

User Response: Correct the problem.

BCPY-08 XXXXX FIELD IS UNDEFINED OR

LEVELS ARE INCONSISTENT IN

REDEFINES EXPRESSION

Explanation: The redefined field is undefined or the

level number of the redefined and redefining fields are

inconsistent.

User Response: Correct the problem.

BCPY-09 Text1 Text2 Text3; INVALID

REPLACING OPTION

Explanation: An improperly coded COPY

REPLACING was detected in the DEFINE macro.

User Response: Refer to Appendix A of

PEngiBAT/PEngiONL manual for allowed COPY

statement formats.

BCPY-10 Text1 Text2 Text3 Text4; RECURSIVE

USE OF PSEUDO TEXT

Explanation: Multiple pairs of pseudo text has been

detected.

User Response: Migration Utility allows only one

ordered pair of pseudo text replacement. Delete extra

statements.

BCPY-11 INCONSISTENT LEVEL FOLLOWING

A GROUP ITEM

Explanation: A group field was not followed by a

field of higher level number.

User Response: Correct the problem.

BCPY-12 SIZE= VALUE IS ILLEGAL OR NOT

SUPPLIED

Explanation: The SIZE= was not provided for the

COPY Member NOQUEUE option.

User Response: The NOQUEUE option requires the

SIZE= parameter.

BCPY-13 RECURSIVE 01 LEVEL INSIDE COPY

Explanation: Multiple 01 levels were detected in the

copybook.

User Response: Remove extraneous 01 levels.

BCPY-14 LENGTH OF REDEFINED FIELD

XXXXX IS INCONSISTENT

Explanation: The length of Redefined field is not

equal to the length of the Redefining field.

User Response: Correct the problem.

BCPY-01 • BCPY-14

250 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

|

BCPY-15 XXXXX: IS AN ILLEGAL COBOL FIELD

NAME

Explanation: An invalid COBOL field name has been

detected.

User Response: Field names can be 1-30 characters

long and must follow COBOL Field naming

conventions.

BCPY-16 ″RENAMES″ IS NOT SUPPORTED,

USE REDEFINES

Explanation: RENAMES was detected in the

copybook.

User Response: Migration Utility does not support

RENAMES. The alternative is to use REDEFINES.

BCPY-17 PARAMETER CONFLICT, NOQUEUE

AND PREFIX

Explanation: NOQUEUE and PREFIX= options were

coded.

User Response: NOQUEUE and PREFIX options are

mutually exclusive. Refer to the reference manual.

CBAS-01 THE ’COBOLBAS’ MACRO HAS BEEN

IMPROPERLY PLACED WITHIN

&SYSECT DIVISION/SECTION,

MACRO IGNORED

Explanation: The COBOLBAS macro is misplaced in

the PEngiBAT source.

User Response: The COBOLBAS macro must be

placed before any divisions or sections.

CBAS-02 COPY=© IS UNKNOWN COPY

DIRECTIVE

Explanation: The COPY= option is not COPY,

++INCLUDE or -INC.

User Response: Correct the problem.

CICSBASE-01 THE ’CICSBASE’’ MACRO HAS

BEEN IMPROPERLY PLACED WITHIN

&SYSECT DIVISION/SECTION,

MACRO IGNORED

Explanation: The CICSBASE macro is misplaced in the

PEngiONL source.

User Response: The CICSBASE macro must be placed

before any divisions or sections.

CICSBASE-02 COPY=© IS UNKNOWN COPY

DIRECTIVE

Explanation: The COPY= option is not COPY,

++INCLUDE or -INC.

User Response: Correct the problem.

CICSBASE-03 MAPSET=XXXX IS AN INVALID

MAPSET NAME

Explanation: XXXX is longer than 7 characters or it is

not a valid program name.

User Response: Mapset names can be 1 to 7 characters

long and start with an alpha character.

DCCL-01 MAXIMUM OF NN OBJECTS

EXCEEDED

Explanation: The maximum number of supported

Migration Utility objects have been exceeded.

User Response: Refer to “OBJECTS” on page 201. If

you must, consolidate your Object Definitions or

arrange them such that you issue fewer Define macros.

If it is not possible to consolidate any Objects, reduce

the number of Objects by coding them using native

COBOL.

DCCL-02 XXXXX HAS BEEN PREVIOUSLY

DEFINED

Explanation: The xxxxx Object has been previously

defined via the DEFINE macro.

User Response: Change the Object name to a unique

name.

DCCL-03 POS NN IS AN INVALID OR ILLEGAL

POSITION VALUE, FIELD-NAME

FIELD

Explanation: The coded position NN for the

FIELD-NAME field in item NN is not numeric or it is

preceded by a “-”.

User Response: Code NN according to the Migration

Utility standards.

DCCL-04 XXXXX: DUPLICATE OR ILLEGAL

FIELD PICTURE, FIELD-NAME

Explanation: The field picture XXXXX coded for the

FIELD-NAME is not a valid COBOL field picture, or

the PIC was specified more than one time, or the PIC

was not coded but the FIELD-NAME has never been

previously defined with a valid picture.

User Response: Correct the invalid picture if it is

invalid, remove the duplicate PIC if it is a duplicate, or

code the picture if it has never been defined before.

BCPY-15 • DCCL-04

Chapter 14. Messages 251

DCCL-05 XXXXX HAS NO ALLOCATED

STORAGE

Explanation: All fields coded for the Object XXXXX

have been found in error, or no fields have been coded,

or the Macro End Delimiter (;) has been misplaced.

User Response: Correct all fields that are in error and

make sure that the Macro End Delimiter is placed

properly.

DCCL-06 VALUE: ILLEGAL USE OF VAL

KEYWORD IN FIELD-NAME

Explanation: The value specified for the

FIELD-NAME field is either illegal or in the wrong

format.

User Response: The Value can be specified only for

the fields defined in the AREA Objects. The Value can

be coded following the VAL or the EQ Positional

Parameter Identifiers only. The Value cannot be coded

for literal or group fields.

DCCL-07 XXXXX: ILLEGAL KEYWORD IN

FIELD DEFINITION, FIELD-NAME

Explanation: None (This is an unused message).

DCCL-08 INCONSISTENT MACRO KEYWORDS

USAGE OR NO KEYWORDS

SPECIFIED

Explanation: The supplied DEFINE macro keywords

are in conflict, that is, two or more mutually exclusive

keywords have been coded in the same macro, or no

valid keywords have been coded.

User Response: Remove the unneeded keywords. The

keywords that may be in conflict are: AREA=,

HEADER=, LINE=, FRAME=, FILE=, PAGEFOOT= and

CTLFOOT=. For example, the FILE= and the AREA=

keywords can coexist, however, the LINE= and the

HEADER= keywords are mutually exclusive and

cannot be specified in the same macro definition.

DCCL-09 EXCESSIVE PARAMETERS IN

DEFINITION

Explanation: A null Positional Parameter has been

detected. A null parameter can be caused by placing

two commas in succession in the macro parameter

string.

User Response: Remove/correct the null string.

DCCL-10 ILLEGAL/CONFLICTING USE OF PIC,

FIELD-NAME

Explanation: The PIC has been coded for a literal, or

PIC was specified more than one time for a field.

User Response: The PIC Positional Identifier is not

allowed for literal, therefore it must be removed.

DCCL-11 VAL KEYWORD IS ILLEGAL FOR

LITERAL, XXXXX

Explanation: The VAL has been coded for a literal.

User Response: The VAL Positional Identifier is not

allowed for literals, therefore it must be removed.

DCCL-12 XXXXX IS AN INVALID LITERAL

Explanation: The XXXXX is not a valid COBOL literal.

User Response: Code a valid COBOL literal.

DCCL-13 VALUE IS INCONSISTENT WITH PIC

TYPE, FIELD-NAME

Explanation: For alphanumeric fields, the coded value

is not enclosed in quotes or equal to ’SPACE’ or

’SPACES’. For numeric fields, the coded value is

enclosed in quotes when it should not be.

User Response: Correct the value to be consistent

with the field type.

DCCL-14 POS NN WOULD CAUSE AN

OVERLAP ON PREVIOUS FIELD. THE

NEXT AVAILABLE POSITION IS POS

NN.

Explanation: The computed start position of the

FIELD-NAME field would overlap the end position of

the field before it. This can occur only for the Header,

Line, Ctlfoot and Pagefoot Objects.

User Response: Adjust the POS value of the field such

that the position less the field length is equal to or

greater than the calculated next available position

displayed in the message.

DCCL-15 THE ABOVE OBJECT MUST BE

DEFINED IN WORKING STORAGE

AREA

Explanation: The DEFINE macro for the Object is not

within the Working Storage Section, or the

″Working-Storage Section″ declarative has been

misplaced or misspelled.

User Response: Move the DEFINE macro and

Parameters to reside within Working-Storage Section.

DCCL-16 THE CALCULATED STORAGE OF

NNN EXCEEDS THE SPECIFIED SIZE

OF NNN

Explanation: The storage needed to house all defined

fields is greater than the specified Object Size. This

error can be caused in two ways:

v The SIZE=NNN parameter does not properly reflect

the object length.

DCCL-05 • DCCL-16

252 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

v The length of one or more fields within the object is

inaccurate.

User Response: Increase the SIZE=NNN value to

reflect the calculated size, or adjust the field lengths to

give the correct size.

DCCL-17 SIZE=NNN IS AN ILLEGAL OR

INSUFFICIENT SIZE

Explanation: For the AREA Objects, the SIZE=NNN is

either not numeric or it exceeds 32767. For the FRAME

Objects, the SIZE=NNN is either not numeric or greater

than 32767, or the computed frame size is less than

one. Note that the frame size is computed by dividing

the SIZE=nnn by the NUP value if the SIZE= was

specified, or by dividing 132 by the NUP value if the

size was not specified.

User Response: Correct the size to comply with

Migration Utility SIZE= requirements.

DCCL-18 XXXXX USAGE IS ILLEGAL FOR

LINES

Explanation: The XXXXX usage has been specified for

a field within a Header, Line, Ctlfoot or Pagefoot

Object.

User Response: The field usage is allowed within the

AREA objects only. Remove the usage clause.

DCCL-19 XXXXX USAGE IS ILLEGAL

Explanation: The XXXXX usage has been coded for an

alphanumeric field, or the picture for the FIELD-NAME

field has been improperly coded as an alphanumeric

picture.

User Response: The COMP, COMP-2, COMP-3 and

COMP-4 usage can be coded for numeric fields only. If

the FIELD-NAME field is a numeric field then change

the field picture to reflect a numeric field, otherwise

remove the XXXXX usage clause.

DCCL-20 MAX OF NN FIELD DEFINITIONS

EXCEEDED, FIELD-NAME FIELD

Explanation: The number of items that can be held in

the internal Migration Utility fields queue has been

exceeded.

User Response: Refer to FIELDS= keyword of

COBOLBAS/CICSBASE macro.

DCCL-21 THE SUM/FORMULA/ACCUM IS

ILLEGAL IN THE

AREA/HEADER/PAGEFOOT

DEFINITION, FIELD-NAME.

Explanation: A SUM, FORMULA or ACCUM field

qualifier has been improperly coded within an AREA,

HEADER or PAGEFOOT object.

User Response: For proper usage refer to the

description of the field qualifier in error, in the ″Define

Macro″ section of this document.

DCCL-22 DUPLICATE OR ILLEGAL USE OF

SUM/ACCUM OR EXIT/LIT KEYWORD

IN FIELD-NAME FIELD

Explanation: A SUM, ACCUM or EXIT field qualifier

has been specified more than one time for the

FIELD-NAME field, or the SUM, ACCUM or EXIT field

qualifiers have been inconsistently used for the same

field, or a SUM, ACCUM or EXIT field qualifier has

been coded for a field within an AREA object.

User Response: For proper usage refer to the

description of the field qualifier in error, in the ″Define

Macro″ section of this document.

DCCL-23 ALPHANUMERIC PICTURE/FIELD

USED ILLEGALLY IN ARITHMETIC

EXPRESSION IN FIELD-NAME FIELD

Explanation: A SUM or an ACCUM field qualifier has

been coded for an alphanumeric field, that is-the field

to be summed/accumulated has an alphanumeric

picture.

User Response: If the field picture has been

improperly coded as an alphanumeric picture, correct

it, or else remove the field qualifier.

DCCL-24 RIGHT PAREN IS MISSING IN

ARITHMETIC EXPRESSION,

FIELD-NAME FIELD

Explanation: The arithmetic expression following the

FIELD-NAME field is not properly enclosed in

parentheses.

User Response: Every arithmetic expression must be

enclosed in parentheses, with an equal number of left

and right parentheses.

DCCL-25 MAX OF NN FORMULA

DEFINITIONS EXCEEDED,

FIELD-NAME FIELD

Explanation: The maximum number of arithmetic

expressions (formulas) that Migration Utility can

accommodate has been exceeded.

User Response: Refer to FORMULAS= keyword of

COBOLBAS/CICSBASE macro.

DCCL-26 THE AREA=XXXXX IS IMPROPERLY

CODED FOR FILE OPTION, ONE

AREA IS REQUIRED IN FILE

DEFINITION

Explanation: Multiple Object names have been coded

in the AREA keyword in attempt to define file(s).

DCCL-17 • DCCL-26

Chapter 14. Messages 253

User Response: When defining files, only one object

name can be supplied in the AREA= parameter.

Remove extraneous object names from the AREA=

sublist.

DCCL-27 FILE=XXXXX HAS BEEN PREVIOUSLY

DEFINED

Explanation: A file of the same name has been

previously defined.

User Response: Alter the file name to a unique name.

DCCL-28 MAX OF NN FILE DEFINITIONS

EXCEEDED

Explanation: The maximum number of file definitions

that can be generated by Migration Utility has been

exceeded.

User Response: Refer to FILES= keyword of

COBOLBAS/CICSBASE macro.

DCCL-29 XXXXX IS AN INVALID AREA GROUP

NAME

Explanation: The XXXXX object name exceeds 16

characters or it contains no characters.

User Response: Code the object name within the

limits of Migration Utility AREA object naming

conventions.

DCCL-30 SIZE=XXX IS ILLEGAL AS WRITTEN

Explanation: The SIZE= parameter has been

improperly coded or the size value is not numeric.

User Response: Code the size parameter according to

Migration Utility keyword parameter conventions.

DCCL-31 LABEL=XXXXX NOT STANDARD OR

OMITTED

Explanation: The specified label is not supported by

Migration Utility or it is improperly coded.

User Response: Refer to the LABEL= keyword

description in the ″Define Macro″.

DCCL-32 RECFM=X NOT F,V,S, OR U

Explanation: The specified record format is not

supported by Migration Utility or it is improperly

coded.

User Response: Refer to the RECFM= keyword

description in the ″Define Macro″.

DCCL-33 BLKSIZE=NNN IS ILLEGAL AS

WRITTEN

Explanation: The BLKSIZE= parameter has been

improperly coded or it is not numeric.

User Response: Refer to the BLKSIZE= keyword

description in the ″Define Macro″.

DCCL-34 XXXXX, GROUP ITEM IS ILLEGALLY

WRITTEN AS THE LAST ENTRY IN

DEFINITION

Explanation: A Group item has been declared but it

was not terminated with an ENDG directive.

User Response: Insert an ENDG directive after the last

field definition which is a part of the declared Group.

DCCL-35 UNBALANCED ENDG NEAR XXXXX

Explanation: An extraneous ENDG directive has been

detected. There are more ENDG directives coded than

declared GROUP items. The extraneous ENDG is

located near item XXXXX as displayed before the

message.

User Response: Remove the extraneous ENDG

directive.

DCCL-36 XXXXX, GROUP DEFINITION IS

ILLEGAL

Explanation: A duplicate Group field qualifier or a

duplicate Redefines directive for a Group field has been

detected, or a Group or Redefines has been coded

within Line, Header, Ctlfoot or Pagefoot object.

User Response: Remove the unneeded Group qualifier

or Redefines directive. Note that the Group and

Redefines can be used within AREA objects only.

DCCL-37 XXXXX IS AN INVALID OCCURS

CLAUSE

Explanation: The OCCURS directive has been

improperly coded.

User Response: Refer to the OCCURS directive

description in the ″Define Macro″ section of this

document for proper format.

DCCL-38 ALIGN=XX, IS AN INVALID/ILLEGAL

ALIGN

Explanation: The ALIGN= keyword parameter has

been improperly coded.

User Response: Refer to the ALIGN= keyword

description in the ″Define Macro″ section of this

document for the proper format.

DCCL-27 • DCCL-38

254 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

DCCL-39 XXXXX IS ILLEGAL AS WRITTEN

Explanation: The object shadowed is either not coded

or it equals the current object name, or the SHADOW

directive was previously processed.

User Response: Refer to the SHADOW directive

description in the ″Define Macro″ section of this

document for the proper format.

DCCL-40 XXXXX IN SHADOW DEFINITION

HAS NOT BEEN PREVIOUSLY

DEFINED OR IT IS NOT A

LINE/CTLFOOT OBJECT

Explanation: The object shadowed has not been

previously defined or it is not a Line or Ctlfoot type of

object.

User Response: The SHADOW directive requires that

the object shadowed is previously defined as a Line or

Ctlfoot object. Rearrange DEFINE macro definitions

such that the object to be shadowed is defined.

DCCL-41 XXXXX IS AN ILLEGAL FIELD NAME,

ASSIGNING BAD-NAME-NN

Explanation: The displayed field is an illegal COBOL

field name. This error can be caused by other errors

that might have been detected, thus causing Migration

Utility to expect a field name prematurely.

User Response: If you truly coded a bad field name,

correct it. If the error was caused due to other errors

then correct other errors.

DCCL-42 XXXXX STATEMENT IS OUT OF

SEQUENCE, FIELD-NAME FIELD

Explanation: Two field qualifiers, directives or

positional identifiers were coded in succession. This

problem can be created when the PIC or POS positional

identifiers or the EQ or REDEFINES directives are not

followed by the respective picture/values/fields.

User Response: Add the necessary

picture/values/fields.

DCCL-43 XXXXX: FORMULA FIELD NAME IS

NOT UNIQUE

Explanation: The XXXXX formula field name has been

previously defined.

User Response: Choose a unique formula field name

not previously defined.

DCCL-44 XXXXX: IS AN ILLEGAL COBOL FIELD

NAME

Explanation: The XXXXX field name is an illegal

COBOL field name. It contains illegal characters or it is

too long.

User Response: Correct the field name in error.

DCCL-45 XXXXX, YYYYY HAS NOT BEEN

PREVIOUSLY DEFINED IN THE

ZZZZZ DEFINITION

Explanation: The YYYYY field to shadow from has

not been defined in the ZZZZZ object definition.

User Response: Change shadow expression to use the

correct field name.

DCCL-46 XXXXX OBJECT NAME IS TOO LONG.

TRUNCATING TO MAXIMUM OF 08

CHARACTERS

Explanation: The object name is too long.

User Response: Assign a new name, up to a

maximum of 08 characters. Note that the object names

for Line, Header, Ctlfoot and Pagefoot objects are

limited to 08 maximum characters in length.

DCCL-47 NUMBER OF NN FRAMES EXCEEDED

Explanation: The maximum number of Frames that

can be handled by Migration Utility has been exceeded.

User Response: Refer to FRAMES= keyword of

COBOLBAS macro.

DCCL-48 FRAME=XXXXX CONTAINS ILLEGAL

DIMENSION

Explanation: The NUP (dimension) parameter has

been improperly coded.

User Response: Refer to the FRAME= keyword

description in the ″Define Macro″ section of this

document for proper frame coding conventions.

DCCL-49 EXPECTING A KEYWORD, FOUND

XXXXX IN THE FRAME. DEFAULTING

TO ″LINE″

Explanation: A Line, Header, Ctlfoot or Pagefoot

keyword is expected.

User Response: Code the proper keyword.

DCCL-50 XX PRINT CONTROL IS OUT OF

SEQUENCE

Explanation: The XX print carriage control characters

have been detected inside a frame object definition

where it does not belong.

User Response: Refer to the FRAME= keyword

description in the ″Define Macro″.

DCCL-39 • DCCL-50

Chapter 14. Messages 255

DCCL-51 XXX KEY FOR &FILE IS ILLEGAL OR

NOT DEFINED IN &FILE-&AREA

RECORD

Explanation: XXX VSAM file key field is not defined

in the file record layout.

DCCL-52 VCHAN OPTION IS IMPROPERLY

USED WITH FRAME BOX FORMAT

Explanation: The VCHAN was coded for a frame

which does not contain any Headers, Ctlfoots or

Pagefoots.

User Response: Remove the VCHAN parameters.

Note the VCHAN option can be coded only for frames

which contain nothing but detail lines.

DCCL-53 MAXIMUM OF NN FIELD GROUP

LEVELS EXCEEDED

Explanation: The maximum number of field levels

supported by Migration Utility has been exceeded.

User Response: Limit the field levels to the maximum

that can be supported by Migration Utility.

DCCL-54 XXXXX FIELD IN YYYYY IS NOT

UNIQUE

Explanation: The XXXXX field name in the YYYYY

object has been previously defined.

User Response: Assign a unique field name. Note that

all fields defined within the AREA objects must be

unique.

DCCL-55 XX AND YY FIELD LEVELS ARE

INCONSISTENT IN REDEFINE

EXPRESSION

Explanation: The field level of the redefining field is

not equal to the field level of the redefined field.

User Response: COBOL requires that the redefined

and the redefining fields are at the same level. Correct

your definitions.

DCCL-56 XXXXX FIELD EXCEEDS 30

POSITIONS

Explanation: The field name exceeds 30 positions.

User Response: Migration Utility allows field names

up to 30 characters in length. Assign a proper name.

DCCL-57 OCCURS CLAUSE IS ILLEGAL FOR

XXXXX. THE CLAUSE IS VALID ONLY

FOR GROUP FIELD DEFINITIONS

Explanation: The OCCURS directive has been coded

for an elementary item (field).

User Response: The OCCURS directive can be coded

only for Group items, therefore you must change your

field to a Group field in order to use the OCCURS.

DCCL-58 XXXXX IS ILLEGAL OR DUPLICATE

FIELD HEADER FOR YYYYY FIELD

Explanation: The XXXXX header exceeds 30

characters, or the HDR has been previously coded, or

the HDR has been coded for a field defined in a

HEADER or PAGEFOOT object.

User Response: Limit the header string to maximum

of 30 characters if it is too long, or delete the unneeded

entry.

DCCL-59 XXXXX: ILLEGAL YYYY OPTION.

Explanation: The YYYYY parameter is unknown to

define macro.

User Response: Remove bad parameter.

DCCL-60 XXXXX FILE DEFINITION IS OUTSIDE

OF FILE SECTION

Explanation: An attempt was made to define a file

outside of FILE SECTION.

User Response: Make sure that the ″FILE SECTION″

was declared before attempting to define any files.

DCCL-61 XXXXX INVALID FUNCTION OPTION

Explanation: XXXX option is unknown to Define

Macro.

User Response: Correct it.

DCCL-62 XXXXX UNDEFINED OBJECT

Explanation: XXXX Object/Field is not defined.

User Response: Correct it.

DCCL-63 MAXIMUM OF NN FUNCTIONS

EXCEEDED.

Explanation: Number of Migration Utility functions

has been exceeded.

User Response: Refer to FUNCTIONS= keyword of

DEFINE macro.

DCCL-64 XXXXX: ILLEGAL FUNCTION

PARAMETER LIST

Explanation: Invalid or null function parameters.

User Response: Correct it.

DCCL-51 • DCCL-64

256 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

DCCL-65 XXXXX: ILLEGAL USE OF FUNCTION

Explanation: Function format is not supported as

coded.

User Response: Correct it.

DCCL-66 XXXXX: INVALID USE OF OBJECT

IDENTIFIER

Explanation: XXXX is not a valid parameter for the

Object in question.

User Response: Correct it.

DCCL-67 NUMBER OF HDR COLUMNS

EXCEEDS 3

Explanation: More than 3 strings have been coded for

the HDR.

User Response: Correct it. Note that strings composed

of multiple words must be enclosed in quotes.

DCCL-68 XXXXX DEMO MODE. YOU MUST

USE TEST FILES.

Explanation: You are licensed for the Migration Utility

Product DEMO only.

User Response: Demo accepts 80-byte records for

PEngiBAT/PEngiEZT products, and Migration

UtilityADR file for PEngiONL.

DCCL-69 ″VARCHAR″ CAN BE USED WITH

GROUP FIELDS ONLY

Explanation: The VARCHAR qualifier was coded for

an elementary item.

User Response: This option is valid for group fields

only.

DCCL-70 RECURSIVE USE OF ″VARCHAR″

WITHIN THE GROUP

Explanation: The VARCHAR qualifier was coded for

group field and for one of its subordinate fields.

User Response: This option is valid for group fields

only. It can be specified once for each group.

DCPY-01 AREA=XXXXX NAME IS ILLEGAL

Explanation: The AREA= object name is not a valid

COBOL field name.

User Response: Object names can be 1-16 characters

long and must follow COBOL Field naming

conventions.

DCPY-02 PARM1 PARM2 (ILLEGAL LEVEL

NUMBER)

Explanation: Expecting a level number in the

copybook near items PARM1 PARM2.

User Response: Correct it.

DCPY-03 XXXXXX IS AN ILLEGAL FIELD NAME

Explanation: Expecting a field name, found XXXXXX.

User Response: Correct it.

DCPY-04 AREA= PARAMETER IS MISSING

Explanation: The AREA= parameter is not supplied.

User Response: Correct it.

DPNL-01 MAXIMUM OF NN OBJECTS

EXCEEDED

Explanation: The maximum number of supported

Migration Utility objects have been exceeded.

User Response: Refer to the OBJECTS= keyword of

COBOLBAS/CICSBASE macro. If necessary, consolidate

your Object Definitions or arrange them such that you

issue fewer Define macros. If it is not possible to

consolidate any Objects, reduce the number of Objects

by coding them using native COBOL.

DPNL-02 XXXXX WAS PREVIOUSLY DEFINED

Explanation: The xxxxx Object has been previously

defined.

User Response: Change the Object name to a unique

name.

DPNL-03 POS NN: INVALID/ILLEGAL

POSITION

Explanation: The coded position NN is not numeric or

it is preceded by a “-”.

User Response: Code NN according to the Migration

Utility standards.

DPNL-04 XXXXX: ILLEGAL FIELD PICTURE

Explanation: The field picture XXXXX coded a valid

COBOL field picture, or the PIC was specified more

than one time, or the PIC was not coded but the

FIELD-NAME has never been previously defined with

a valid picture.

User Response: Correct the invalid picture if it is

invalid, remove the duplicate PIC if it is a duplicate, or

code the picture if it has never been defined before.

DCCL-65 • DPNL-04

Chapter 14. Messages 257

DPNL-05 XXXXX HAS NO ALLOCATED

STORAGE

Explanation: All fields coded for the Object XXXXX

have been found in error, or no fields have been coded,

or the Macro End Delimiter (;) has been misplaced.

User Response: Correct all fields that are in error and

make sure that the Macro End Delimiter is placed

properly.

DPNL-06 VAL XXXX: RECURSIVE USE OF

VALUE

Explanation: The value specified is either illegal or in

the wrong format.

User Response: The Value can be coded following the

VAL Positional Parameter Identifier. The Value cannot

be coded for literal.

DPNL-10 PICTURE IS ILLEGAL FOR LITERALS

Explanation: The PIC has been coded for literal.

User Response: The PIC Positional Identifier is not

allowed for literal, therefore it must be removed.

DPNL-11 VAL IS ILLEGAL FOR LITERALS

Explanation: The VAL has been coded for literal.

User Response: The VAL Positional Identifier is not

allowed for literals, therefore it must be removed.

DPNL-12 XXXXX: END QUOTE IS MISSING

Explanation: The XXXXX literal for alphanumeric field

is not enclosed in quotes.

User Response: Code a valid COBOL literal enclosed

in quotes.

DPNL-14 POS NN OVERLAPS PREVIOUS FIELD

Explanation: The start position of the field would

overlap the end position of the previous field.

User Response: Adjust the POS value of the field such

that the position less the field length is equal to or

greater than the calculated next available position

displayed in the message.

DPNL-15 DEFPANEL IS OUTSIDE OF

WORKING STORAGE

Explanation: The DEFPANEL macro for the Object is

not within the Working Storage Section, or the

″Working-Storage Section″ declarative has been

misplaced or misspelled.

User Response: Move the macro and parameters to

reside within Working-Storage Section.

DPNL-16 THE CALCULATED STORAGE OF

NNN EXCEEDS THE SPECIFIED SIZE

OF NNN

Explanation: The storage needed to house all defined

fields is greater than the specified Object Size. This

error can be caused in two ways:

1. The SIZE= parameter does not properly reflect the

object length.

2. The length of one or more fields within the object is

inaccurate.

User Response: Increase the SIZE= value to reflect the

calculated size, or adjust the field lengths to give the

correct size.

DPNL-17 SIZE=NNN: ILLEGAL OR

INSUFFICIENT SIZE

Explanation: Size is illegal as written.

User Response: Refer to SIZE= of DEFPANEL macro

for conventions.

DPNL-20 MAX OF NN FIELDS EXCEEDED

Explanation: The number of items that can be held in

the internal Migration Utility fields queue has been

exceeded.

User Response: Refer to FIELDS= keyword of

COBOLBAS/CICSBASE macro.

DPNL-30 SIZE=XXX IS ILLEGAL AS WRITTEN

Explanation: The SIZE= parameter has been

improperly coded or the size value is not numeric.

User Response: Code the size according to SIZE=

keyword of the ″ DEFPANEL″ macro.

DPNL-37 XXXXX: NO VALID PICTURE FOUND

Explanation: The XXXX field is coded without a valid

picture.

User Response: Refer to the PIC directive rules of the

″DEFPANEL″ macro. Note that a valid field picture

must be supplied, or the field must have been

previously defined with a valid picture.

DPNL-38 ALIGN=XX: INVALID/ILLEGAL ALIGN

Explanation: The ALIGN= keyword parameter has

been improperly coded.

User Response: Refer to the ALIGN= keyword

description of the DEFPANEL macro.

DPNL-05 • DPNL-38

258 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

DPNL-39 XXXXX IS ILLEGAL AS WRITTEN

Explanation: The object shadowed is either not coded

or it equals the current object name.

User Response: Refer to the SHADOW directive

description in the DEFPANEL macro.

DPNL-40 XXXXX IN SHADOW DEFINITION

NOT DEFINED

Explanation: The object shadowed has not been

previously defined.

User Response: The SHADOW directive requires that

the object shadowed is previously defined.

DPNL-41 XXXXX ILLEGAL VALUE OR NOT IN

QUOTES

Explanation: The specified value is invalid.

User Response: The value must be a valid numeric

literal for numeric fields, alphanumeric literal for

alphanumeric fields, or a field name.

DPNL-42 XXXXX STATEMENT IS OUT OF

SEQUENCE

Explanation: Two field qualifiers, directives or

positional identifiers were coded in succession. This

problem can be created when the PIC or POS positional

identifiers or the EQ or REDEFINES directives are not

followed by the respective picture/values/fields.

User Response: Add the necessary

picture/values/fields.

DPNL-43 XXXXX: EXTENDED ATTRIBUTE

SUPPORT IS REQUIRED

Explanation: An extended attribute such as COLOR,

BLINK. . . was detected, but the map was not defined

with the extended attribute support.

User Response: Refer to: EXTATT=, DSATTS= AND

MAPATTS= keyword of the ″DEFPANEL″ macro.

DPNL-44 XXXXX: ILLEGAL COBOL FIELD

NAME

Explanation: The XXXXX field name is an illegal

COBOL field name. It contains illegal characters or it is

too long.

User Response: Correct the field name in error.

DPNL-45 XXXXX, YYYYY HAS NOT BEEN

PREVIOUSLY DEFINED IN THE

ZZZZZ DEFINITION

Explanation: The YYYYY field to shadow from has

not been defined in the ZZZZZ object definition.

User Response: Change shadow expression to use the

correct field name.

DPNL-50 XX ROW IS OUT OF SEQUENCE

Explanation: The ROW XX value is not numeric or it

is out of sequence.

User Response: Row number must be numeric and

defined in sequence in respect to the previous row.

DPNL-51 SCROLL XXXX IS ILLEGAL

Explanation: XXX is not numeric or it exceeds the

maximum number of rows supported by the map.

User Response: Number of scroll rows must be

numeric. It also cannot exceed the maximum number of

rows declared by the SIZE=(rows,cols) keyword of the

″DEFPANEL″ macro.

DPNL-52 XXXX: UNPAIRED SCROLL/END-
SCROLL

Explanation: SCROLL / END-SCROLL statements are

not paired.

User Response: For each SCROLL NN there must be

one END-SCROLL statement in the map definition.

Code statements accordingly.

DPNL-53 XXXX: MAPFRM/MAP NAME IS OVER

7 CHARACTERS IN LENGTH

Explanation: The XXXX name is too long.

User Response: Limit the name to maximum of 7

characters.

DPNL-54 XXXXX ILLEGAL PARAMETER IN

&KEYWORD=

Explanation: The XXXXX parameter is illegal for the

displayed keyword.

User Response: Refer to the ″DEFPANEL″ macro for

specific keyword parameters.

DPNL-55 XXXX: ILLEGAL USE OF FUNCTION

Explanation: A function was specified for a filler or in

the MAPFRM object.

User Response: Remove the function statement.

DPNL-56 XXXXX FIELD EXCEEDS 20

POSITIONS

Explanation: The field name exceeds 20 positions.

User Response: DEFPANEL allows field names up to

20 characters in length. Assign a name of no more than

20 characters.

DPNL-39 • DPNL-56

Chapter 14. Messages 259

DPNL-57 XXXX: INCONSISTENT MAPFRM

USAGE

Explanation: XXXX is not a valid MAPFRM

(TYPE=MAPFRM), or MAPFRM= was coded for

TYPE=MAPFRM.

User Response: Refer to the ″DEFPANEL″ macro for

map format usage.

DPNL-58 XXXXX IS ILLEGAL OR RECURSIVE

ATTR

Explanation: Illegal or recursive use of attribute was

detected.

User Response: Refer to the ″DEFPANEL″ macro for

valid attribute combinations.

DPNL-59 XXXXX: VALUE/LITERAL EXCEEDS 120

CHARACTERS

Explanation: The XXXXX value is too long.

User Response: Reduce the value to maximum of 120

characters.

DPNL-60 NN: ROW NOT LOCATED OR

INVALID

Explanation: ROW NN is not numeric, or ROW NN

was expected but not found.

User Response: Code proper row number.

DPNL-61 @PFAID NOT FOLLOWED BY

BRACKETED AID LIST

Explanation: @PFAID parameters are not enclosed in

parentheses.

User Response: Put parentheses around parameters.

DPNL-62 XXXXX: UNDEFINED OBJECT

Explanation: XXXX Object/Field specified in the

function is not defined or it is not a valid CON or SEL

function.

User Response: Correct it.

DPNL-63 MAXIMUM OF NN FUNCTIONS

EXCEEDED.

Explanation: Number of Migration Utility functions

has been exceeded.

User Response: Refer to FUNCTIONS= keyword of

the DEFPANEL/DEFINE macro.

DPNL-64 XXXXX: ILLEGAL FUNCTION

PARAMETER LIST

Explanation: Function parameters are not enclosed in

parentheses.

User Response: Every function must be followed by a

parameter list enclosed in parentheses. If there are no

parameters then an empty () list must be specified.

DPNL-65 &NAME: CURSOR LOCATION NOT

SPECIFIED

Explanation: Insert Cursor (IC) was not located

during the decoding of the map fields.

User Response: IC must be specified for a field within

the map.

DPNL-66 XXXXX: RECURSIVE USE OF LIT

Explanation: LIT was coded more then one time for

the same field.

User Response: Remove the duplicate LIT.

ECCL-01 MAXIMUM OF NN ELEMENTS

EXCEEDED IN THE XXXXX/CONTROL

DEFINITION

Explanation: The PPL of the XXXXX PPLI contains too

many objects.

User Response: Reduce the number of objects to an

acceptable level.

ECCL-02 ILLEGAL USE OF CH1 OR NEWPAGE

ON DETAIL LINE DEFINITION

Explanation: CH1 or NEWPAGE print carriage control

has been coded for a detail object (line).

User Response: Migration Utility restricts the CH1

and NEWPAGE usage to the CTLFOOT, PAGEFOOT

and HEADER type of objects. Remove the illegal print

carriage control.

ECCL-03 XXXXX IS AN UNDECLARED OR

NULL ENTRY IN THE

YYYYY/FRAME/CONTROL

DEFINITION

Explanation: The XXXXX object has not been defined

via the Define macro, or two commas have been coded

in succession, or no entries have been supplied for the

YYYYY PPLI.

User Response: Determine the cause and correct it.

DPNL-57 • ECCL-03

260 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

ECCL-04 XXX YYYYY IS AN ILLEGAL PRINT

CONTROL FOR DETAIL LINE

OBJECTS OF VERTICAL REPORTS

(REFER TO FRAME LINE OBJECTS)

Explanation: The XXX print carriage control specified

for the YYYYY LINE object is not allowed by Migration

Utility. The YYYYY LINE is the internal Frame name

assigned by Migration Utility to the detail line.

User Response: Migration Utility allows only SP1

print carriage control for the detail lines of Vertical

Reports. If you need double or triple space, you can

use ″SP1 NEXT″ technique to insert blank lines where

needed. Note that the overstrike (SP0) is not allowed

for vertical reports either.

EXTF-01 FILE KEYWORD IS MISSING NEAR,

PARM1, PARM2

Explanation: The FILE keyword is expected.

User Response: This can be caused by other improper

parameters. Verify and correct.

EXTF-02 DDNAME,

UNDEFINED/CONFLICTING OUTPUT

FILE

Explanation: The DDNAME for the output file is

undefined or it was used as input file.

User Response: This can be caused by other improper

parameters. Verify and correct.

EXTF-03 XXXXXX, IS AN UNKNOWN

PARAMETER

Explanation: The XXXXXX parameter is not a valid

EXTRACT macro parameter/keyword.

User Response: This can be caused by other improper

parameters. Verify and correct.

EXTF-04 DDNAME, INPUT FILE IS NOT

DEFINED

Explanation: The DDNAME for input file is not

defined via the DEFINE macro.

User Response: This can be caused by other improper

parameters. Verify and correct.

EXTF-05 FIELD IS RECURSIVELY USED IN

MATCH LIST

Explanation: The FIELD name was specified twice for

the same file.

User Response: This can be caused by other improper

parameters. Verify and correct.

EXTF-06 FIELD IS ILLEGAL OR UNDEFINED

Explanation: The FIELD name specified is not

defined.

User Response: This can be caused by other improper

parameters. Verify and correct.

EXTF-07 FIELD CONTAINS ILLEGAL

SEQUENCE ATTRIBUTE

Explanation: The sequence attribute is not (A) or (D).

User Response: Verify and correct.

EXTF-08 XXXXXX IS AN ILLEGAL

RELATIONAL OPERATOR

Explanation: The XXXXXX is not a valid KEEP

operator in EXTRACT macro.

User Response: This can be caused by other improper

parameters. Verify and correct.

EXTF-09 FIELD, EXCEEDS MAXIMUM OF NN

FIELDS

Explanation: The FIELD would exceed the fields

queue capacity of NN.

User Response: Decrease the number of fields in

output record.

EXTF-10 MATCH KEYS ARE MISSING FOR

DDNAME

Explanation: No valid ″BY″ fields were detected for

DDNAME.

User Response: This can be caused by other improper

parameters. Verify and correct.

EXTF-11 DDNAME EXCEEDS MAXIMUM OF

NN FILES

Explanation: Maximum number of input files that can

be handled by the EXTRACT macro was exceeded.

User Response: This can be caused by other improper

parameters. Verify and correct.

EXTF-12 DDNAME IS MISSING RECORD

DEFINITION

Explanation: File DDNAME was defined in error by

the DEFINE macro, or the work area specified via the

USING statement was not defined.

User Response: This can be caused by other improper

parameters. Verify and correct.

ECCL-04 • EXTF-12

Chapter 14. Messages 261

EXTF-13 OBJECT RECORD IS NOT DEFINED

WITH A PREFIX

Explanation: The output file record or specified work

area is not defined with a prefix.

User Response: Verify and correct.

EXTF-14 FIELD IS NOT COMPONENT OF

INPUT FILES

Explanation: The ″BY″ field (key) is not defined in the

input file record.

User Response: Verify and correct.

EXTF-15 FIELD1 AND FIELD2 ARE

INCOMPATIBLE

Explanation: The FIELD1 and FIELD2 are not of the

same format. One is numeric, the other is

alphanumeric.

User Response: Verify and correct.

EXTF-16 FILE DDNAME, INCORRECT

NUMBER OF MATCH KEYS

Explanation: The number of ″BY″ fields (keys) is not

equal to the number of keys for the first file.

User Response: Verify and correct.

EXTF-17 FIELD IS NOT COMPONENT OF

DDNAME FILE

Explanation: The ″BY″ field (key) is not defined in the

input file record.

User Response: Verify and correct.

EXTF-18 XXXXXX DUPLICATE OR ILLEGAL

PARAGRAPH NAME

Explanation: The XXXXXX paragraph name is invalid

or it was used for some other file.

User Response: Verify and correct.

EXTF-19 DDNAME, DUPLICATE OR

CONFLICTING INPUT FILE

Explanation: The DDNAME was previously processed

in the same EXTRACT/MATCH, or a user I/O macro

fake DDNAME coincides with one of the files defined

via the DEFINE macro or other facilities.

User Response: Verify and correct.

EXTF-20 USING XXXXXX WORK AREA IS NOT

DEFINED OR IT IS ILLEGAL AS USED

Explanation: The XXXXXX work area was not defined

via the DEFINE macro.

User Response: Verify and correct.

EXTF-21 DDNAME, XXXXXX WORK AREA IS

NOT DEFINED

Explanation: See EXTF-20 message.

EXTF-22 DDNAME, XXXXXX WORK AREA IS

NOT DEFINED

Explanation: See EXTF-20 message.

EXTF-23 DDNAME BLKSIZE NNN IS INVALID

Explanation: The NNN value is not numeric or it

exceeds maximum.

User Response: Verify and correct.

EXTF-24 FILE-SCAN DOES NOT SUPPORT

″SORT″ ON INPUT

Explanation: Files cannot be sorted with FILE-SCAN.

User Response: Remove SORT option. If file(s) must

be sorted, sort them before invoking EXTRACT.

FCCL-01 XXXXX IS AN ILLEGAL FILE/ASSIGN

NAME

Explanation: The XXXXX is an invalid file ddname or

longer than 8 characters.

User Response: Change the file name or the assign

name to comply with the system file naming standards.

FCCL-02 (This message is unused at this time)

FCCL-03 ORG=XXXXX IS AN UNKNOWN FILE

ORGANIZATION

Explanation: The XXXXX is an unknown Migration

Utility file organization.

User Response: Code one of Migration Utility

supported file organizations. Refer to the ORG=

keyword description in the ″Define Macro″ section of

this document for valid parameters.

FCCL-04 BUFFERS=XXXXX IS ILLEGAL AS

WRITTEN

Explanation: The Buffers= value is either not numeric

or it exceeds 256.

User Response: Code the proper Buffers= value.

EXTF-13 • FCCL-04

262 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

FCCL-05 CONFLICTING OR ILLEGAL FILE

ACCESS ORG=XXXXX AND

ACCESS=YYYYY

Explanation: For ORG=SEQ, ORG=SEQUENTIAL,

ORG=PUNCH, ORG=READER, ORG=PRINTER,

ORG=VSAM-SEQ, or ORG=VSAM-SEQUENTIAL, the

ACCESS=YYYYY is not ACCESS=SEQUENTIAL. For

ORG=INDEXED or ORG=RELATIVE the

ACCESS=YYYYY is not ACCESS=DYNAMIC or

ACCESS=SEQUENTIAL or ACCESS=RANDOM.

User Response: Correct the ORG= and ACCESS= to

be consistent according to the Migration Utility

conventions.

FCCL-06 KEY=XXXXX NULL OR ILLEGAL FILE

KEY

Explanation: The VSAM file key field name is either

not supplied or it is longer than 16 characters.

User Response: The KEY= is a required parameter for

VSAM files. Correct it as needed.

FCCL-07 ALTKEY=XXXXX IS ILLEGAL AS

WRITTEN

Explanation: The VSAM Alternate key field name is

longer than 16 characters.

User Response: Migration Utility supports field names

up to 16 character long. Correct it as needed.

FCCL-08 FILEIO OPTION HAS BEEN

PREVIOUSLY ISSUED, PEngiCCL

PROVIDES FOR ONE FILE I/O ONLY

Explanation: FILEIO=YES has been previously

processed for another file.

User Response: Migration Utility can generate file

read procedure logic for ONLY one file. If you need to

read more than one file, you can code the read/write

logic using native COBOL, in the Procedure Division.

However, FILEIO=YES must be removed for this file.

GCCL-01 MAX OF NN OBJECTS EXCEEDED

Explanation: The maximum number of generated

reports that can be handled by Migration Utility has

been exceeded.

User Response: You are limited to the number of

reports that can be generated by Migration Utility in a

single program. If you need more reports, create a

subprogram with additional reports in it.

GCCL-02 REPORT=XXXXXXX HAS BEEN

PREVIOUSLY DEFINED

Explanation: The XXXXXXX report has been

previously defined.

User Response: Change the report name to a unique

name.

GCCL-03 GENERATE MACRO IMPROPERLY

USED OUTSIDE OF PROCEDURE

DIVISION

Explanation: The GENERATE macro has been issued

outside of Procedure Division.

User Response: Code the macro within the Procedure

Division boundaries.

GCCL-04 XXXXX: UNDECLARED OR NULL

ENTRY IN THE LINE DEFINITION

Explanation: An undefined or null object has been

detected in the Line Positional Parameter List.

User Response: All objects in the Line PPL must have

been previously defined via the Define macro. A null

entry can be caused by two commas in succession or

the absence of PPL parameters.

GCCL-05 ILLEGAL PRINT CONTROL ON THE

1ST HEADER LINE

Explanation: A print carriage control other than CH1

or NEWPAGE has been coded before the first Header

line.

User Response: CH1 and NEWPAGE print carriage

control are the only ones allowed on the first Header

line.

GCCL-06 XXXXX: UNDECLARED OR NULL

ENTRY IN THE CTLFOOT

DEFINITION

Explanation: An undefined or null object has been

detected in the Ctlfoot Positional Parameter List.

User Response: All objects in the Ctlfoot PPL must

have been previously defined via the Define macro. A

null entry can be caused by two commas in succession

or the absence of PPL parameters.

GCCL-07 REPORT OBJECTS HAVE NOT BEEN

DEFINED VIA THE DEFINE MACRO

Explanation: A GENERATE macro has been coded but

no valid objects have been defined via the Define

macro. This also could be caused if all Defined Objects

have been found in error.

User Response: Define your report objects (Lines,

FCCL-05 • GCCL-07

Chapter 14. Messages 263

Headers, Pagefoots and Ctlfoots) before you issue the

Generate macro.

GCCL-08 FIELD OBJECTS HAVE NOT BEEN

DEFINED VIA THE DEFINE MACRO

Explanation: A GENERATE macro has been coded,

but no valid fields have been defined via the Define

macro. Also caused when all Defined Objects have been

found in error.

User Response: Define your report objects (Lines,

Headers, Pagefoots and Ctlfoots) before you issue the

Generate macro.

GCCL-09 XXXXX HAS NOT BEEN PREVIOUSLY

DEFINED

Explanation: The displayed field name has not been

previously defined in any Defined Objects or it was

misspelled.

User Response: The fields used in the Control Break

(Control PPLI) must be defined within an object via the

Define macro. If it was misspelled then correct the field

name. If the field is not within a defined object, but is

needed, define it in a work AREA object in working

storage.

GCCL-10 UNPAIRED PARENS IN XXXXX LINE

DEFINITION

Explanation: The Line PPL is coded in sublisted form,

but the expression contains an uneven number of left

and right parentheses.

User Response: Make sure that the expression

contains an even number of left and right parentheses.

Also make sure that the expression begins with a left

parenthesis “(” and ends with a right parenthesis “)”.

GCCL-11 THE WORD ’FINAL’ IS IMPROPERLY

PLACED IN THE CONTROL

DEFINITION (IT MUST FOLLOW THE

’CONTROL’ WORD IF SPECIFIED)

Explanation: The word ″FINAL″ has been misplaced

in the CONTROL PPL.

User Response: The word ″FINAL″ in the Control

PPL represents the Final Control Break. When coded, it

is treated as any other control break fields. However,

since the control breaks follow a hierarchy, the final

control break must be first in the list, if specified.

GCCL-12 MAX OF NN OBJECTS EXCEEDED,

ITEM XXXXX

Explanation: The maximum number of supported

Migration Utility objects have been exceeded. This error

is caused in the Generate macro while trying to add

internally generated objects to the objects queue. The

NN is the maximum number of objects that can be

handled by Migration Utility.

User Response: Refer to the OBJECTS= of the

COBOLBAS/CICSBASE macro. If you still have

problems consolidate your Object Definitions or

arrange them such that you issue fewer Define macros.

If it is not possible to consolidate any Objects, reduce

the number of Objects by coding them using native

COBOL.

GCCL-13 XX IS AN ILLEGAL CONTROL

SEQUENCE OPTION

Explanation: The XX field sequence attribute coded

for one of the control fields in the Control PPL is not

(A) or (D).

User Response: A field can be in ascending (A)

sequence or descending (D) sequence. Correct the

attribute in error.

GCCL-14 XXXXX IN YYYYY FORMULA IS

ILLEGAL AS WRITTEN WITH

SUM/ACCUM/EXIT OPTION

Explanation: The XXXXX field qualifier was used for a

reserved field (such as @COUNT) in the formula

YYYYY, or the SUM field qualifier was used in the

formula YYYYY which resides in a non-Ctlfoot object.

User Response: Remove the field qualifier in error.

GCCL-15 XXXXX IN YYYYY FORMULA IS NOT

A NUMERIC FIELD

Explanation: The field XXXXX has not been defined as

a numeric field.

User Response: Only numeric fields can be used in

arithmetic formulas. Either change the field definition

to a numeric usage or correct the formula expression to

include the correct fields.

GCCL-16 XXXXX IN YYYYY FORMULA IS

UNDEFINED OR ILLEGAL AS

WRITTEN

Explanation: The field XXXXX in the YYYYY formula

is either an invalid COBOL field name or it has not

been defined via the Define macro.

User Response: All fields which are coded in a

formula expression must be defined within an object

via the Define macro. Fields which are not defined

must be moved into a field which has been defined in

order to be used in the formula.

GCCL-08 • GCCL-16

264 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

GCCL-17 NUMBER OF NN SUMS EXCEEDED

Explanation: The maximum number of SUM fields

that can be handled by Migration Utility in a single

report has been exceeded. The fields included in this

count are the SUM fields within the CTLFOOT objects

and CTLFOOT formulas.

User Response: Reduce the number of SUM fields.

GCCL-18 XXXXX IN YYYYY FORMULA IS

UNDEFINED OR ILLEGAL AS

WRITTEN

Explanation: The field XXXXX in the YYYYY formula

is either an invalid COBOL field name or it has not

been defined via the Define macro.

User Response: All fields which are coded in a

formula expression must be defined within an object

via the Define macro. Fields which are not defined

must be moved into a field which has been defined to

be used in the formula.

GCCL-19 NUMBER OF NN SAVE FIELDS

EXCEEDED

Explanation: The maximum number of Saved fields

that can be handled by Migration Utility in a single

report has been exceeded. The fields included in this

count are the fields which are printed on the report

headers, control break totals and pagefoots. Note that

the literal and formulas are not included in this count.

User Response: Reduce the number of fields that

must be saved. Such fields are defined within the

Header, Pagefoot and Ctlfoot objects, and included on

the report.

GCCL-20 XXXXX: UNDECLARED OR NULL

ENTRY IN THE CONTROL/CTLFOOT

DEFINITION

Explanation: The displayed Object has not been

defined via the Define macro or it was misspelled.

User Response: The objects used in the Control Break

(Control PPL or CTLFOOT PPL) must be defined as

CTLFOOT objects via the Define macro. If it was

misspelled correct the object name, else remove it.

GCCL-21 SEQUENCE=XXXXX IS INVALID,

VALID OPTIONS ARE

SEQUENCE=YES OR SEQUENCE=NO

Explanation: An invalid option has been coded for the

report sequence check.

User Response: Use the correct sequence option,

Sequence=Yes or Sequence=No.

GCCL-22 XXXXX IS AN INVALID REPORT FILE

DDNAME

Explanation: The REPORT= report DDNAME is not a

valid system ddname or it exceeds 8 characters in

length or it is less than 6 characters in length or it is

equal ″REPORTS″ literal.

User Response: Correct the report name to comply

with Migration Utility coding conventions.

GCCL-23 XXXXX IS AN UNKNOWN GENERATE

MACRO KEYWORD

Explanation: The XXXXX is an unknown GENERATE

macro positional parameter list identifier (PPLI).

User Response: Correct or remove the PPLI in error.

GCCL-24 DUPLICATE CTLFOOT PPL

DEFINITION

Explanation: The CTLFOOT PPLI has been coded

more than one time within a single Generate macro.

User Response: The CTLFOOT PPLI can appear only

once for each Generate macro invocation. Correct the

extraneous CTLFOOT PPLI.

GCCL-25 DUPLICATE PAGEFOOT PPL

DEFINITION

Explanation: The PAGEFOOT PPLI has been coded

more than one time within a single Generate macro.

User Response: The PAGEFOOT PPLI can appear

only once for each Generate macro invocation. Correct

the extraneous PAGEFOOT PPLI.

GCCL-26 DUPLICATE HEADER PPL

DEFINITION

Explanation: The HEADER PPLI has been coded more

than one time within a single Generate macro.

User Response: The HEADER PPLI can appear only

once for each Generate macro invocation. Correct the

extraneous HEADER PPLI.

GCCL-27 DUPLICATE CONTROL PPL

DEFINITION

Explanation: The CONTROL PPLI has been coded

more than one time within a single Generate macro.

User Response: The CONTROL PPLI can appear only

once for each Generate macro invocation. Correct the

extraneous CONTROL PPLI.

GCCL-17 • GCCL-27

Chapter 14. Messages 265

GCCL-28 DUPLICATE LINE PPL DEFINITION

Explanation: The LINE PPLI has been coded more

than one time within a single Generate macro.

User Response: The LINE PPLI can appear only once

for each Generate macro invocation. Correct the

extraneous LINE PPLI.

GCCL-29 MAXIMUM ALLOWED CONTROL

BREAKS EXCEEDED

Explanation: Maximum of 16 Control Breaks has been

exceeded. The count also includes the ″Final″ control

break.

User Response: None. You have reached the

maximum number of control breaks that can be

supported by Migration Utility.

GCCL-30 XXXXX LITERAL IN YYYYY

OVERLAPS THE PREVIOUS LITERAL

BY NN POSITIONS

Explanation: A LINE or A CTLFOOT object has been

coded in the Header PPL. The Generate macro

attempted to construct a Header line from the field

names defined in such object. The Generate macro tries

to align the field name literal with the actual position

of the edited field contents as defined in the object.

This error is caused when the field name is longer than

the field and there are not enough fillers between the

fields to compensate for the difference in length, thus

causing an overlap on the previous field’s name literal.

User Response: Allow more spaces between the

current field and the previous field in the object in

error. The NN displayed in the message indicates the

number of needed positions. Also, if appropriate,

consider using the Define macro option

ALIGN=(YES,NN). The Align option will automatically

allocate enough fillers between the fields to

accommodate a header constructed of field names.

GCCL-31 RECURSIVE USE OF THE XXXXX

FIELD IN THE CONTROL

DEFINITION

Explanation: The XXXXX field has been used more

than once in the Control PPL.

User Response: Remove the extraneous field.

GCCL-32 XXXXX FRAME HAS NOT BEEN

PREVIOUSLY DEFINED

Explanation: The frame XXXXX has not been defined

via the Define macro or the frame name was

misspelled.

User Response: Correct the frame name if it has been

misspelled, or else define it via the Define macro.

GCCL-33 XXXXX FRAME CAUSED AN

OVERFLOW ON THE FRAME DATA

QUEUE OF 512 CHARACTERS

Explanation: When generating code for one or more

frames, the Generate macro collects all internally

assigned object names and print carriage control in a

buffer of 512 characters. This error is caused when the

length of all collected object names and print carriage

control characters exceeds 512.

User Response: The number of objects that can be

included in a single report with one or more frames is

limited to the number of object names that can fit into

a 512 characters buffer. Therefore, there is no solution

to this problem unless you can reduce the number of

objects within frames.

GCCL-34 FRAMES XXXXX AND YYYYY

CONTAIN UNEQUAL SIZE OR

DIMENSION

Explanation: Frame XXXXX and frame YYYYY are

inconsistent, that is, the frame size (SIZE=) and

dimension (NUP) are not equal.

User Response: Migration Utility handles multiple

frames in a single report only of equal size and

dimension. Change the frame parameters for frame

XXXXX and frame YYYYY so that they are equal in size

and dimension.

GCCL-35 RECURSIVE OR ILLEGAL USE OF

FRAME XXXXX

Explanation: The frame XXXXX has been specified

more than one time in the Frame PPL.

User Response: Remove the extraneous parameter.

GCCL-36 XXXXX IS AN UNKNOWN HANDLE

OPTION

Explanation: The XXXXX Handle Option is an

unrecognized option.

User Response: Refer to the HANDLE description in

the ″Generate Macro″ description of this document.

GCCL-37 XXXXX: UNDECLARED/NULL OR

ILLEGAL OBJECT IN THE GENERATE

OBJECT LIST

Explanation: An undefined, null or illegal object has

been detected in the OBJECT= Parameter List of

Generate macro.

User Response: All objects in the OBJECT= list must

have been previously defined via the AREA= and

PREFIX= option of Define macro. A null entry can be

caused by two commas in succession.

GCCL-28 • GCCL-37

266 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

GCCL-38 XXXXX: ILLEGAL USE OF OBJECT.

XXXXX IS NOT DEFINED WITH A

PREFIX

Explanation: An illegal object has been detected in the

OBJECT= Parameter List of Generate macro.

User Response: All objects in the OBJECT= list must

be defined with the PREFIX= option of Define macro.

GCCL-39 XXXXX: NNN OPTIONAL LINES

EXCEEDED

Explanation: The maximum number of optional lines

that can be handled by Migration Utility in a single

report has been exceeded.

User Response: Reduce the number of optional lines.

GCCL-40 PAGE OR SIZE OR ORPHAN VALUE

IS NOT NUMERIC

Explanation: The value specified for PAGE= or SIZE=

or ORPHAN= keyword parameters of

Generate/Generatm macro is not numeric.

User Response: Correct the erroneous value.

GCCL-41 INCONSISTENT USE OF CTLFOOT

AND PAGEFOOT OPTIONS

Explanation: The CTLFOOT and PAGEFOOT objects

listed in the Generate macro are not of the same origin.

This is caused when the FRAME PPL is coded in the

Generate macro in combination with free objects.

User Response: The objects listed in the CTLFOOT

and PAGEFOOT positional parameter list must all be

defined either in the frame or as free objects. That is, if

the CTLFOOT objects are defined in the frame then the

PAGEFOOT objects must also be defined in the frame

and vice versa.

GCCL-42 DUPLICATE SORT OR READ PPL

DEFINITION

Explanation: The SORT or READ PPLI has been

issued more than one time for the same GENERATE

macro.

User Response: Remove the duplicate PPLI.

GCCL-43 XXXXXXXX PPL PARAMETERS

EXCEED 512 CHARACTERS

Explanation: The total length of the SORT or READ

PPL strings exceeds 512 characters.

User Response: Reduce the length of the field or

paragraph names to bring the total length below 512

characters. XXXXXXXX is the string which caused the

overflow.

GCCL-44 ″HANDLE″ IS ILLEGAL WITH

READ/SORT OPTION

Explanation: The HANDLE PPLI has been coded in

the GENERATE macro that uses SORT or READ

option.

User Response: The ″HANDLE″ cannot be used with

SORT or READ option of the GENERATE macro. If you

must handle a Header record, do so via a SORT or

READ Input Exit. The header record information can be

saved in working storage and accessed as such.

GCCL-45 &REPORT XXX PREFIX IS NOT

AVAILABLE

Explanation: There is a conflict in prefix usage for

GENERATE/GENERATM macros.

User Response: Choose a different prefix. Refer to the

GENERATE macro PREFIX= keyword description.

GCCL-46 &REPORT READ/SORT USING IS

NOT ALLOWED OR PREVIOUSLY

DEFINED NAME

Explanation: READ or SORT with USING &REPORT

was specified with a shared printer ddname

(DDNAME=).

User Response: Sharing of I/O such as READ or

SORT results in concurrent printing of the subject

Reports. Refer to the GENERATE macro for

DDNAME= keyword description.

GCCL-47 &TBname TABLE LEVELS IS LESS

THAN #CTL BREAKS

Explanation: HANDLE TABLE was specified for a

table containing fewer table levels than the number of

report control breaks.

User Response: Synchronize table levels with the

control breaks. Refer to the GENERATE macro

HANDLE TABLE rules.

GCCL-48 PLOT (X Y) CODED FOR NON-FRAME

&REPORT, OR IT WAS PLACED

AFTER THE ″FRAME″ PPL

Explanation: PLOT (X,Y) option was specified for

report/section that does not use FRAMEs, or the PLOT

(X Y) was placed after the FRAME PPL in the

&REPORT section.

User Response: PLOT can be specified in the

GENERATM/GENERATE macro only for sections that

use FRAMEs. The statement PLOT (X Y) must be

placed before the FRAME PPL (it is the rule).

GCCL-38 • GCCL-48

Chapter 14. Messages 267

GCCL-49 CHANNEL STOPS EXCEED NN LINES

PER PAGE

Explanation: A VCHAN stop for one of the channels

exceeds the number of lines per page specified by the

PAGE=nn.

User Response: If the PAGE=nn is correct refer to the

default VCHAN values listed in Appendix A. You can

override the defaults by providing a VCHAN list as

part of the Frame definition.

GCCL-51 &REPORT DRILL DOWN OBJECTS

ARE MISSING

Explanation: DRILL parameter request was passed to

GENERATQ macro, but there are no valid DRILL

DOWN reports queued by the DEFINE macro.

User Response: Report this problem to the IBM

support center.

GCLR-01 XXXXXX IS NOT DEFINED.

Explanation: The CCGCLEAR Macro object was not

defined by the DEFINE macro.

User Response: Only objects defined via the DEFINE

macros can be used with CCGCLEAR.

GENM-01 REPORT SECTIONS ARE OUT OF

ORDER

Explanation: In GENERATM macro, SECTION and

END-SECTION are not specified in the correct

sequence, that is, the first section does not begin with a

SECTION identifier, or an END-SECTION is not

followed by a SECTION identifier.

User Response: Refer to the GENERATM macro

sections coding standards.

GENM-02 SECTION &SECTION EXCEEDS

PARAMETER CAPACITY

Explanation: The length of all macro parameters (data

strings) for the named section exceeds 6,144 characters.

User Response: Refer to the GENERATM macro

sections coding standards.

GSNP-01 OBJECT=XXXXXX IS NOT DEFINED

Explanation: The CCGSNAP macro object was not

defined by the DEFINE macro.

User Response: Only objects defined via the DEFINE

macros can be used with CCGSNAP.

SCCL-01 XXXXXXXX REPORT IN THE

SORT/READ IS UNDEFINED OR

FOLLOWED BY EXTRANEOUS FIELDS

Explanation: The Report in the SORT USING

&REPORT or READ USING &REPORT was not

previously defined, or extraneous parameters have

been detected in the definition.

User Response: Remove extraneous parameters, or

refer to the correct &REPORT name.

SCCL-02 SORT REQUESTED BUT NO SORT

FIELDS SPECIFIED

Explanation: The SORT or READ option used in the

GENERATE macro definition is incomplete.

User Response: Correct the erroneous value.

SCCL-03 FILE &SORTDDN ALREADY EXISTS

OR BAD DDNAME

Explanation: The internally generated sort DDNAME

overlaps a previously defined file DDNAME.

User Response: Alter the externally defined

DDNAME so that it does not interfere with the

internally Migration Utility generated names.

SCCL-04 UNKNOWN SORT TYPE IN &FIELD

DEFINITION

Explanation: The sort type attribute is not ″(A)″ or

″(D)″.

User Response: Correct the erroneous type.

SCCL-05 SORT FIELD &FIELD IS UNDEFINED

OR ILLEGAL

Explanation: The &FIELD field in the SORT PPL is

either undefined or illegal as written.

User Response: Correct the erroneous field.

SCCL-06 SORT/READ FILE(S) NAME IS

MISSING OR UNDEFINED

Explanation: The &FILE in the SORT FILE &FILE or

READ FILE &FILE is undefined or not coded.

User Response: Code the correct file name for as per

SORT/READ requirements.

SCCL-07 &AREA IN THE SORT/READ PPL IS

NOT DEFINED IN WORKING

STORAGE OR LINKAGE SECTION

Explanation: The &AREA work area in the

SORT/READ PPL was not defined via the Define

macro in working storage or linkage section.

User Response: Make sure that the &AREA definition

GCCL-49 • SCCL-07

268 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

||
|

|
|
|

|
|

resides in working storage or linkage section.

SCCL-08 XXXXXXXX IS AN ILLEGAL EXIT

PARAGRAPH NAME

Explanation: The XXXXXXXX is an illegal

COBOL/Migration Utility paragraph name.

User Response: Correct the paragraph name. Note

that Migration Utility paragraph names must start with

an alphabetic character an can contain only hyphens an

alphanumeric characters.

SCCL-09 &EXIT OUTPUT EXIT IS ILLEGAL IN

READ PPL

Explanation: An output exit was coded as part of the

READ PPL.

User Response: The READ PPL does not support an

output exit. Remove extraneous exit.

SCCL-10 RECURSIVE USE OF &FIELD IN

SORT/READ OPTION

Explanation: The &FIELD field was specified more

than one time in the SORT PPL.

User Response: Remove extraneous field definition.

SCCL-11 XXXXXX IS ILLEGAL AS WRITTEN

Explanation: The user I/O macro exceeds 9 characters

or is less than 2 characters long.

User Response: Correct it.

SCCL-12 MAXIMUM OF NN INPUT FILES

EXCEEDED

Explanation: The maximum number OF READ/SORT

files has been exceeded.

User Response: Decrease the number of files.

SCCL-13 XXXXXX WORK AREA IS NOT

DEFINED

Explanation: The XXXXXX work area was not defined

by the DEFINE macro.

User Response: Define it or use the correct work area.

TBDF-01 DATA STRING EXCEEDS 16384

CHARACTERS

Explanation: The length of table CREATE definitions

(data strings between CREATE and DATA parameters)

is over 512 characters or the length of all field

definitions (data strings) for a table in a nested macro

is over 16384 characters.

User Response: Parameters such as the field names

and the pictures are counted in the size. You can shrink

the field names to fit more fields in the buffer.

TBDF-02 &AREA TABLE DEFINITION IS

INCOMPLETE

Explanation: The DEFTABLE macro was coded

without CREATE and/or DATA options.

User Response: Add the required options/parameters.

TBDF-03 UNEVEN NUMBER OF FIELDS OR NO

DATA FOUND

Explanation: The number of data strings following the

DATA is not an integral number of expected data

COLUMNS. Either COLUMNS NN is improper or the

supplied data fields are out of synchronization.

User Response: Add the required data fields, correct

COLUMNS parameter.

TBDF-04 XXXX IS NOT NUMERIC

Explanation: The XXXX data is not numeric but it is

being assigned to a numeric field.

User Response: Correct the data.

TBDF-05 &AREA HAS BEEN PREVIOUSLY

DEFINED

Explanation: A duplicate OBJECT name has been

detected.

User Response: Assign an new Name.

TBDF-06 &AREA, EXCEEDS MAX OF NN

AREAS

Explanation: You have reached the maximum number

of objects that can be defined by the DEFTABLE macro.

User Response: Consider combining two or more

tables into a single table.

TBDF-08 COLUMNS/LEVELS NN IS ILLEGAL

AS SPECIFIED

Explanation: LEVELS NN or COLUMNS NN is not

numeric, or COLUMNS NN is greater than the number

of fields contained in the table record.

User Response: Correct the problem.

TBDF-09 CREATE/DATA PRECEDED BY OTHER

INFORMATION

Explanation: Extraneous parameters have been

detected before CREATE or DATA statements.

User Response: Remove extraneous parameters.

SCCL-08 • TBDF-09

Chapter 14. Messages 269

TBDF-10 XXXXX: DATA STRING IS TOO LONG

Explanation: The string of alphanumeric field exceeds

the length allowed by the field definition.

User Response: Correct the problem.

TBDF-11 CONFLICT: MEMORY DYNAMIC AND

HARD CODED DATA

Explanation: An attempt to define a table with

″MEMORY DYNAMIC″ and Hard Coded Data.

User Response: Tables with ″MEMORY DYNAMIC″

option are allocated at program run time. Hard-coded

data cannot be defined for such tables. Refer to

DEFTABLE macro for proper usage of ″MEMORY

DYNAMIC″ option.

TSRV-01 TBSERV USED OUTSIDE OF

PROCEDURE DIVISION

Explanation: The TBSERV macro was issued outside

of Procedure Division.

User Response: Correct the problem. If Procedure

Division line was specified, make sure that there were

no errors on the macro before Procedure Division

statement.

TSRV-02 &TBname, USING &OBJECT IS

INVALID OR MISSING

Explanation: The TBSERV OPEN or TBSERV CREATE

function was coded for a table without the USING

option.

User Response: You must provide a USING &OBJECT

parameters to identify an area for the table.

TSRV-03 &TBname, &TBKEY IS NOT DEFINED

Explanation: The specified table key is not a part of

the table record definition.

User Response: All table keys must be an integral

part of the table record.

TSRV-05 &FUN FOR &TBname IS AN

UNKNOWN FUNCTION

Explanation: The specified function is not supported.

User Response: Refer to the TBSERV macro reference

for valid functions.

TSRV-06 &TBname WAS NOT PREVIOUSLY

DEFINED

Explanation: A TBSERV function was requested for a

table which was not previously opened or created.

User Response: Refer to the TBSERV macro reference

for valid function sequences.

TSRV-07 &TBname WAS PREVIOUSLY OPENED

Explanation: A TBSERV CREATE function was

requested for a table that was previously

created/opened.

User Response: Use a different TBname.

TSRV-08 &TBname IS DEFINED AS A FILE

DDNAME

Explanation: A TBSERV CREATE/OPEN function was

requested for a table, but the TBname used is already

assigned to a file.

User Response: Use a different TBname.

TSRV-09 &TBname, ROWS NN IS INVALID

Explanation: The ROWS value is not numeric.

User Response: Specify a numeric value.

TSRV-10 &TBname, KEY IS NOT DEFINED IN

&OBJECT

Explanation: The specified table key is not a part of

the table record definition.

User Response: All table keys must be an integral

part of the table record.

TSRV-11 &TBname, -TEXT- IS AN UNKNOWN

PARAMETER

Explanation: The displayed text is not a valid TBSERV

option.

User Response: Correct the problem.

TSRV-12 &TBname, COLUMNS/LEVELS NN IS

INVALID

Explanation: LEVELS NN or COLUMNS NN is not

numeric, or COLUMNS NN is greater than the number

of fields contained in the table record.

User Response: Correct the problem.

TSRV-13 &TBname ROWS IS INVALID OR NOT

SPECIFIED

Explanation: ROWS value is not numeric or ROWS 0

was specified.

User Response: Correct the problem.

TSRV-14 &TBname -PARAGRAPH- IS AN

INVALID EXIT NAME

Explanation: The paragraph name for error handling

is not a valid COBOL paragraph name.

User Response: Correct the problem. Note that the

TBDF-10 • TSRV-14

270 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

paragraph name must begin with a letter.

TSRV-15 &TBname &TBKEY EXCEEDS KEY

QUEUE CAPACITY

Explanation: There are too many table keys.

Maximum of 256 table keys can be specified in a single

Migration Utility program which is an average of 8

keys per table.

User Response: Decrease the number of table keys.

Consider combining two or more tables into a single

table if possible.

TSRV-16 &TBname, ″NOT″ IS NOT FOLLOWED

BY AN OPERATOR

Explanation: An improper logical term was specified.

User Response: Refer to the TBSERV ″KEY″ coding

standards.

TSRV-17 COLUMNS NN EXCEEDS THE

NUMBER OF TABLE FIELDS

Explanation: The number of specified columns

exceeds the number of fields contained in the table

record.

User Response: Correct the problem.

TSRV-18 &TBname ″DIRECT″ OPTION

REQUIRES A NUMERIC KEY AND A

SINGLE EQUAL RELATION.

Explanation: The DIRECT access was specified but the

table key is not a numeric field with EQUAL relation.

User Response: Refer to the TBSERV ″KEY″ coding

standards.

TSRV-19 &TBname, &TBbind IS AN INVALID

TABLE FOR BIND

Explanation: The BIND was coded with a table name

greater than 8 characters long.

User Response: Correct the problem.

TSRV-20 &TBname, BINARY SEARCH

REQUIRES ″EQUAL″ IN KEY

RELATION

Explanation: The BINARY search option was coded

without the EQUAL in key relational operator.

User Response: Correct the problem.

TSRV-21 &TBname, ″-TEXT-″ NOT ALLOWED

IN BINARY SEARCH

Explanation: The BINARY search option was coded

with the -text- in key relational operator.

User Response: Refer to TBSERV macro reference for

proper syntax.

TSRV-22 &TBname, MULTI-LEVEL TABLE

SPECIFIED FOR BINARY SEARCH

Explanation: The BINARY search option was coded

for a multi-level table.

User Response: Refer to TBSERV macro reference for

proper syntax.

TSR1-01 &TBname, B&FUN UNSUPPORTED

TBSERV1 FUNCTION

Explanation: A non-supported function was requested

for one level table.

User Response: Correct the problem.

TSR1-02 &TBname, &FIELD FORMULA FOUND

IN DEFINITION

Explanation: A formula was coded in the table record

definition.

User Response: Formulas are not valid in table

records. Remove the formula.

TSR1-03 &TBname, &TBbind IS UNDEFINED

FOR BIND

Explanation: The &TBname was coded with a BIND

for &TBbind, but &TBbind table was not defined.

User Response: Provide the proper table name in the

BIND list.

TSR1-04 &TBname, ROWS/COLUMNS OF

&TBbind ARE INCONSISTENT

Explanation: The &TBname is a single-level table and

&TBbind is a multi-level table.

User Response: None. A multi-level table cannot be

bound to a single-level table.

TSR1-05 &TBname, NULLSON/NULLSOFF

REQUIRES QMFLAG

Explanation: Handling of null rows was requested but

the table was not created/opened with the QMFLAG

option.

User Response: Refer to the TBSERV

NULLSON/NULLSOFF coding standards.

TSRV-15 • TSR1-05

Chapter 14. Messages 271

TSR1-07 &TBname &Fun, CONFLICTS WITH

MEMORY STATIC

Explanation: The ALLOC/DEALLOC was specified

for a static table.

User Response: Refer to TBSERV macro reference for

proper syntax.

TSRM-01 &TBname, &FUN UNSUPPORTED

TBSERVM FUNCTION

Explanation: A non-supported function was requested

for multi-level table.

User Response: Correct the problem.

TSRM-02 &TBname, &FIELD FORMULA FOUND

IN DEFINITION

Explanation: A formula was coded in the table record

definition.

User Response: Formulas are not valid in table

records. Remove the formula.

TSRM-03 &TBname, &TBbind IS UNDEFINED

FOR BIND

Explanation: The &TBname was coded with a BIND

for &TBbind, but &TBbind table was not defined.

User Response: Provide the proper table name in the

BIND list.

TSRM-04 &TBname, ROWS/COLUMNS OF

&TBbind ARE INCONSISTENT

Explanation: The &TBname is a multi-level table and

&TBbind is a multi-level table but the number of table

levels are not equal.

User Response: None. A multi-level table can be

bound to a multi-level table only if the table levels are

equal. A single-level table can be bound to a multi-level

table, however.

TSRM-05 &TBname, NULLSON/NULLSOFF

REQUIRES QMFLAG

Explanation: Handling of null rows was requested but

the table was not created/opened with the QMFLAG

option.

User Response: Refer to the TBSERV

NULLSON/NULLSOFF coding standards.

VCCL-01 XXX IS AN UNKNOWN CHANNEL

Explanation: XXX is an unsupported/unknown

Migration Utility print carriage control.

User Response: Report this problem to the IBM

support center.

VCCL-02 XXX IS AN ILLEGAL CHANNEL STOP

Explanation: The line number which represents the

channel is not numeric or it exceeds 66.

User Response: All Virtual Channels must be assigned

a line number from 1 to 66, because the line number

represents that line on the page. For example, if CH2 is

assigned to line 20, then every time when CH2 is used

before a print object Migration Utility will skip to line

20. Correct the line number to comply with Migration

Utility standards.

VCCL-03 NNN EXCEEDS PAGE OF 66 LINES

Explanation: See ″VCCL-02″ message above.

VCCL-04 XXXXX EXTRANEOUS POSITIONAL

PARAMETERS, IGNORED

Explanation: An odd number of parameters has been

supplied in the VCHAN sublist.

User Response: The VCHAN sublist parameters must

be coded in pairs. For each Virtual Channel there must

follow a line number for that channel. Correct the

VCHAN sublist such that it has an even number of

parameters.

VCCL-05 INCONSISTENT CH1 STOP, LINE 1 IS

FORCED

Explanation: A line number other than line 1 has been

coded for CH1 or NEWPAGE.

User Response: Migration Utility always forces line 1

for CH1 or NEWPAGE print controls. Code 1 for the

line number to avoid error.

VCCL-06 CHANNEL XXXXX STOP IS OUT OF

SEQUENCE

Explanation: The line number for the channel XXXXX

is lower than the line number of the previous channel.

User Response: The line numbers represent the stops

on the page. All stops must be in sequence by channel

number. That is, stops for higher channels must be

higher than the stops for the lower channels. Put your

VCHAN sublist into proper sequence.

XCNV-01 BOOK &NAME NAME IS ILLEGAL

Explanation: The copybook name is invalid.

XCNV-02 &WORD IS ILLEGAL LEVEL NUMBER

Explanation: Expecting a level number. This problem

can be caused by missing periods in the COBOL

copybook.

TSR1-07 • XCNV-02

272 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

XCNV-03 &WORD IS AN ILLEGAL FIELD

NAME

Explanation: The name is not a legal COBOL field

name allowed by Migration Utility.

XCNV-04 NAME= PARAMETER IS MISSING

Explanation: Copybook name was not supplied

(NAME= is missing).

XCNV-06 TOO MANY TRANSLATE WORDS OR

END-TRANS MISSING

Explanation: 256 translate pairs of words exceeded.

XCNV-08 ″RENAMES″ IS NOT SUPPORTED,

USE REDEFINES

Explanation: RENAMES cannot be interpreted by this

facility. Resort to REDEFINES statement.

XCNV-03 • XCNV-08

Chapter 14. Messages 273

Migration Utility function generated messages

ABEND00-01 &PARM: NOT CONSTRUCTOR

OPTION

Explanation: Function is a Constructor but it was used

as Selector.

ABEND00-02 &PROGRAM: PROGRAM NAME IS

TOO LONG

User Response: Code 1 - 8 characters valid program

name.

ABEND00-03 &PROGRAM: NNN PROGRAMS

EXCEEDED

User Response: Use fewer number of ABEND

programs if possible, otherwise resort to your own

ABEND handling in Native COBOL.

ABEND00-04 UNKNOWN FUNCTION

PARAMETERS

Explanation: Parameter is not supported by the

function.

ADDSIGN-01 OBJECT LENGTH IS INVALID

Explanation: The specified object length is not

numeric or it is greater than 9 or it is less than 1.

ADDSIGN-02 TARGET IS INVALID OR NOT

SUPPLIED

Explanation: The target object name is either invalid

or not coded.

ADDSIGN-03 OBJECT IS INVALID OR NOT

SUPPLIED

Explanation: The source object name is either invalid

or not coded.

AUTOHELP-01 &PARM: NOT SELECTOR OPTION

Explanation: Function is a Selector but it was used as

Constructor.

AUTOHELP-02 &MAPNAM: INVALID MAP NAME

Explanation: &MAPNAM is invalid or not defined.

AUTOHELP-03 &WORD: UNDEFINED

PARAMETER

Explanation: Parameter is not supported by the

function.

BROWSE0-01 &PARM: NOT SELECTOR OPTION

Explanation: Function is a Selector but it was used as

Constructor.

BROWSE0-02 &MAPNAM: UNDEFINED MAP

NAME

Explanation: &MAPNAM is invalid or not defined.

BROWSE0-03 &DDNAME: UNDEFINED FILE

NAME

Explanation: &DDNAME is invalid or not defined.

BROWSE0-04 &FILKEY: INVALID OR UNDEFINED

FILE KEY NAME

Explanation: &FILKEY is invalid or not defined.

BROWSE0-05 XXXXX FUNCTION NOT ENCLOSED

IN PARENTHESES

User Response: All file I/O and exit functions must

be coded enclosed in parentheses. Example: READEXIT

(SEL_READ-File ()).

BROWSE1-01 &PARM: NOT SELECTOR OPTION

Explanation: Function is a Selector but it was used as

Constructor.

BROWSE1-02 &MAPNAM: UNDEFINED MAP

NAME

Explanation: &MAPNAM is invalid or not defined.

BROWSE1-03 &DDNAME: UNDEFINED FILE

NAME

Explanation: &DDNAME is invalid or not defined.

BROWSE1-04 &FILKEY: INVALID OR UNDEFINED

FILE KEY NAME

Explanation: &FILKEY is invalid or not defined.

BROWSE1-05 XXXXX FUNCTION NOT ENCLOSED

IN PARENTHESES

User Response: All file I/O and exit functions must

be coded enclosed in parentheses. Example: READEXIT

(SEL_READ-FILE ()).

BROWSE2-01 &PARM: NOT SELECTOR OPTION

Explanation: Function is a Selector but it was used as

Constructor.

ABEND00-01 • BROWSE2-01

274 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

BROWSE2-02 &MAPNAM: UNDEFINED MAP

NAME

Explanation: &MAPNAM is invalid or not defined.

BROWSE2-03 &DDNAME: UNDEFINED FILE

NAME

Explanation: &DDNAME is invalid or not defined.

BROWSE2-04 &FILKEY: INVALID FILE KEY NAME

Explanation: &FILKEY is invalid or not defined.

BROWSE2-05 LINKMOD IS NOT PROVIDED

User Response: A default program name (Link to

Module) must be coded as per BROWSE2 function

standards.

BROWSE2-06 XXXXX FUNCTION NOT ENCLOSED

IN PARENTHESES

User Response: All file I/O and exit functions must

be coded enclosed in parentheses. Example: READEXIT

(SEL_READ-FILE ()).

BROWSE3-01 &PARM: NOT SELECTOR OPTION

Explanation: Function is a Selector but it was used as

Constructor.

BROWSE3-02 &MAPNAM: UNDEFINED MAP

NAME

Explanation: &MAPNAM is invalid or not defined.

BROWSE3-03 &DDNAME: UNDEFINED FILE

NAME

Explanation: &DDNAME is invalid or not defined.

BROWSE3-04 &FILKEY: INVALID OR UNDEFINED

FILE KEY NAME

Explanation: &FILKEY is invalid or not defined.

BROWSE3-05 XXXXX FUNCTION NOT ENCLOSED

IN PARENTHESES

User Response: All file I/O and exit functions must

be coded enclosed in parentheses. Example: READEXIT

(SEL_READ-FILE ()).

BUILDJCL-01 MAXIMUM JCL ENTRIES EXCEEDS

NNN

User Response: Increase QSIZE=NNN in the

BUILDJCL Macro Prototype.

CNVBIN0-01 OBJECT LENGTH OF &WFLENT

EXCEEDS 3 CHRS

Explanation: The length of conversion object is

invalid.

CNVBIN0-02 OBJECT &OBJECT IS INVALID OR

NOT SUPPLIED

Explanation: &OBJECT is not a valid COBOL field

name.

CNVBIN0-03 TARGET &TARGET IS INVALID OR

NOT SUPPLIED

Explanation: &TARGET is not a valid COBOL field

name.

CNVBIN1-01 OBJECT LENGTH OF &WFLENT

EXCEEDS 3 CHRS

Explanation: The length of conversion object is

invalid.

CNVBIN1-02 OBJECT &OBJECT IS INVALID OR

NOT SUPPLIED

Explanation: &OBJECT is not a valid COBOL field

name.

CNVBIN1-03 TARGET &TARGET IS INVALID OR

NOT SUPPLIED

Explanation: &OBJECT is not a valid COBOL field

name.

COMMAND-01 &WORD IS OUT OF SEQUENCE

Explanation: The &WORD is unknown to

COMMAND function or it is logically placed out of

sequence.

COMMKEY-01 &PARM: NOT CONSTRUCTOR

OPTION

Explanation: Function is a Constructor but it was used

as Selector.

COMMKEY-02 &WORD IS ILLEGAL OR TOO

LONG Cause; The buffer name (first

parameter) or the index name specified

by the CINDEX= is too long or not a

valid COBOL field name. Note also that

the buffer name can be up to 7

characters long. The index name can be

up to 8 characters long.

BROWSE2-02 • COMMKEY-02

Chapter 14. Messages 275

CONSTRUC-01 &OBJECT IS UNDEFINED

Explanation: The specified object &OBJECT is not

defined via Migration Utility facilities.

CONSTRUC-02 &OBJECT DOES NOT CONFORM

TO FUNCTION RULES

Explanation: The type of object is not supported for

the requested option. Refer to the ″CONSTRUC″

function in the Migration Utility reference manual for

valid choices.

CONSTRUC-03 &RCODE: INVALID RETURN

CODE NAME

Explanation: Return code field name is less than 4

characters or it does not start with ″RC-″.

CONSTRUC-04 &OBJECT: TABLE AREA WAS NOT

DEFINED

Explanation: A table service was requested but the

table was not created.

CONSTRUC-05 &OBJECT: SEED FUNCTION WAS

NOT DEFINED

Explanation: SEED option was requested for an object

that does not have any defined seed functions.

CONSTRUC-06 &OBJECT: ″&WOPTION″

UNSUPPORTED OPTION

Explanation: The specified option is not supported for

the requested object.

CONSTRUC-07 &OBJECT: CICS MODE

UNSUPPORTED OPTION

Explanation: The specified option is not supported for

CICS® programs.

CONTROL-01 &PARM: NOT CONSTRUCTOR

OPTION

Explanation: Function is a Constructor but it was used

as Selector.

CONTROL-02 &MAPNAM: UNDEFINED MAP

NAME

Explanation: &MAPNAM is invalid or not defined.

CONTROL-03 &WORD: UNKNOWN SENDMAP

PARAMETER

Explanation: Parameter is not supported by the

function.

CVBOOL0-01 &PARM: NOT CONSTRUCTOR

OPTION

Explanation: Function is a Constructor but it was used

as Selector.

CVBOOL0-02 OBJECT &OBJECT IS ILLEGAL OR

NOT DEFINED

Explanation: The specified object name is illegal or

not defined via Migration Utility facilities.

CVBOOL1-01 &PARM: NOT CONSTRUCTOR

OPTION

Explanation: Function is a Constructor but it was used

as Selector.

CVBOOL1-02 OBJECT &OBJECT IS ILLEGAL OR

NOT DEFINED

Explanation: The specified object name is illegal or

not defined via Migration Utility facilities.

DATEADJ-01 &DATE: ILLEGAL FIELD NAME

Explanation: The name is not a valid COBOL field

name.

DATEADJ-02 &MASK: UNKNOWN DATE MASK

Explanation: Mask &MASK is not supported by the

function.

DATEADJ-03 BASE &BASE: NOT ALLOWED WITH

&MASK

Explanation: The specified base cannot be used with

the supplied mask.

DATEADJ-04 (nnn) IS NOT A VALID NUMERIC

LITERAL

Explanation: Numeric literal is expected, none found.

DATEADJ-05 &MASK DOES NOT QUALIFY FOR

MONTHS ADJUSTMENT

Explanation: The date format specified by the mask

does not qualify for the month adjustment.

DATEADJ-06 OPTIONS CONFLICT:

DAYS/MONTHS/YEARS, USE ONE

ONLY

Explanation: Options are in conflict.

CONSTRUC-01 • DATEADJ-06

276 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

DATEDAY-01 &DATE: ILLEGAL FIELD NAME

Explanation: The name is not a valid COBOL field

name.

DATEDAY-02 &MASK: UNKNOWN DATE MASK

Explanation: Mask &MASK is not supported by the

function.

DATEDAY-03 &BASE: BASE IS NOT 360 OR 365

Explanation: The specified base is not supported.

DATEDIF-01 &DATE: ILLEGAL FIELD NAME

Explanation: The name is not a valid COBOL field

name.

DATEDIF-02, XXXXX ILLEGAL PARAMETER(S)

Explanation: The parameter is not supported by the

function.

DATEMAX-01 &DATE: ILLEGAL FIELD NAME

Explanation: The name is not a valid COBOL field

name.

DATEMAX-02 &MASK: UNKNOWN DATE MASK

Explanation: Mask &MASK is not supported by the

function.

DATEMAX-03 BASE &BASE: NOT SUPPORTED BY

DATEMAX

Explanation: The specified base cannot be used with

DATEMASK function.

DATEREG-01 &DATE: ILLEGAL FIELD NAME

Explanation: The name is not a valid COBOL field

name.

DATEREG-02 &MASK: UNKNOWN DATE MASK

Explanation: Mask &MASK is not supported by the

function.

DATEREG-03 &BASE: BASE IS NOT 360 OR 365

Explanation: The specified base is not supported.

DATESRV-01 &DATE: ILLEGAL FIELD NAME

Explanation: The name is not a valid COBOL field

name.

DATESRV-04 &FRMASK: MASK NOT SUPPORTED

BY DATEMAX

Explanation: The specified mask is not supported by

the DATEMAX function.

DATESRV-03 &FUNCT: ILLEGAL DATE FUNCTION

Explanation: The function is not a valid date function.

DATESRV-04, XXXXX ILLEGAL PARAMETER(S)

Explanation: Parameter is not supported by the

function.

DATESRV-05 DATEDIF MASKS ARE NOT EQUAL

Explanation: The ″FROMmask″ and the ″TOmask″ are

not compatible.

DATESRV-06 OPTIONS CONFLICT:

DAYS/MONTHS/YEARS, USE ONE

ONLY

Explanation: Options are in conflict.

DATESWP-01 &DATE IS AN ILLEGAL FIELD

NAME

Explanation: The name is not a valid COBOL field

name.

DATESWP-02 &MASK IS AN UNKNOWN DATE

FORMAT

Explanation: Mask &MASK is not supported by the

function.

DATEVAL-01 &DATE: ILLEGAL FIELD NAME

Explanation: The name is not a valid COBOL field

name.

DATEVAL-02 &MASK: UNKNOWN DATE MASK

Explanation: Mask &MASK is not supported by the

function.

DATEVAL-03 BASE &BASE: NOT ALLOWED WITH

&MASK

Explanation: The specified base cannot be used with

the supplied mask.

DEFERTAB-01 RECURSIVE USE OF DEFERTAB

Explanation: DEFERTAB was coded more than one

time in the program.

DATEDAY-01 • DEFERTAB-01

Chapter 14. Messages 277

DEFERTAB-02 &NAME MULTIPLE NAMES NOT

SUPPORTED

Explanation: The NAME= is improperly coded.

DEFERTAB-03 &NAME: NO MESSAGES SUPPLIED

Explanation: DEFERTAB definition was not followed

by valid messages.

DEFERTAB-04 &VAL IS NOT NUMERIC

Explanation: The specified value is expected to be

numeric.

DEFERTAB-05 &QAREA HAS BEEN PREVIOUSLY

DEFINED

Explanation: Conflict in naming conventions. Other

objects have the same name.

DEFERTAB-06 &QAREA EXCEEDS MAX OF

N’>ABLQNAM AREAS

Explanation: Too many table entries. Reduce the

number of tables if possible.

DEFERTAB-07 UNEVEN NUMBER OF DATA

FIELDS SUPPLIED

Explanation: The data strings for generating errors are

not paired.

DEFERTAB-10 XXXXX: DATA STRING IS TOO

LONG

Explanation: The literal is too long (exceeds 40 bytes).

DELSIGN-01 OBJECT LENGTH IS INVALID

Explanation: The specified object length is not

numeric or it is greater than 9 or it is less than 1.

DELSIGN-02 TARGET IS INVALID OR NOT

SUPPLIED

Explanation: The target object name is either invalid

or not coded.

DELSIGN-03 OBJECT IS INVALID OR NOT

SUPPLIED

Explanation: The source object name is either invalid

or not coded.

DIMAGE-01 &OPTION: ILLEGAL OPTION

Explanation: The specified option is not supported by

the function.

DIMAGE-02 &FIELD: ILLEGAL FIELD NAME

Explanation: The name is not a valid COBOL field

name.

DIMAGE-03 &RCODE: INVALID RETURN CODE

NAME

Explanation: Return code field name is less than 4

characters or it does not start with ″RC-″.

DSTRING-01 &PARM: NOT CONSTRUCTOR

OPTION

Explanation: Function is a Constructor but it was used

as Selector.

DSTRING-02 &WORD IS ILLEGAL OR TOO

LONG

Explanation: Illegal parameter.

DSTRING-03 &BUFNAME IS INCONSISTENTLY

USED

Explanation: The specified buffer name was

previously used in DSTRING function with different

options. DSTRING buffer and options must be

consistent to its first declaration.

FILESRV-01 &PARM: NOT SELECTOR OPTION

Explanation: Function is a Selector but it was used as

Constructor.

FILESRV-02 &DDNAME: UNDEFINED FILE NAME

Explanation: &DDNAME is invalid or not defined.

FILESRV-03 &FILKEY: INVALID FILE KEY NAME

Explanation: &FILKEY is invalid or not defined.

FILESRV-04 &IOFUN: UNKNOWN I/O REQUEST

Explanation: I/O &IOFUN is not supported by the

function.

FILESRV-05 &WORD: UNKNOWN FILESRV

PARAMETER

Explanation: Parameter is not supported by the

function.

DEFERTAB-02 • FILESRV-05

278 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

FILESRV-06 EXIT FUNCTION NOT ENCLOSED IN

PARENTHESES

User Response: All file I/O and exit functions must

be coded enclosed in parentheses. Example: READEXIT

(SEL_READ-FILE ()).

FUNCTION-001 XXXXX: UNKNOWN PARAMETER

Explanation: Parameter is not supported by the

function.

FUNCTION-002 &NAME :IMPROPER FUNCTION

NAME

Explanation: For local functions, the function name

exceeds 23 characters. For all other functions, the

function name exceeds 8 characters.

FUNCTION-003 &NAME: DUPLICATE OR

ILLEGAL FUNCTION

Explanation: Duplicate function name or function was

found in error.

FUNCTION-004 &ELIAS : IMPROPER ELIAS

NAME

Explanation: Elias name is more than 23 characters

long or it is not a valid COBOL paragraph name.

FUNCTION-005 PARM= EXCEEDS 40

CHARACTERS

Explanation: PARM=&PARM exceeds 40 characters.

Reduce PARM+ string.

FUNCTION-006 PARM= :NOT CON OR SEL

OPTION

Explanation: The function type described by the

PARM= is not CON or SEL. Note that the type must be

the first argument in the PARM= list, that is, PARM=(CON

. .).

FUNCTION-007 &MEMBER: IMPROPER USING

&MEMBER NAME

Explanation: Function USING &MEMBER. The

supplied function library name (&MEMBER) is more

than 8 characters in length.

FUNCTION-009 TOO MANY PARAMETERS IN

USING LIST

Explanation: The USING option was coded with too

many parameters.

FUNCTION-010 &ELIAS IS NOT DEFINED IN

&MEMBER

Explanation: Improper use of Elias name.

GRETURN-01 &PARM: NOT SELECTOR OPTION

Explanation: Function is a Selector but it was used as

Constructor.

GRETURN-02 &WORD: UNKNOWN GRETURN

PARAMETER

Explanation: Parameter is not supported by the

function.

GVALUES-01 &WORD IS NOT A VALID FIELD

NAME

Explanation: The name is not a valid COBOL field

name.

GVALUES-02 ″&WORD″ IS OUT OF SEQUENCE

Explanation: Parameter is not supported by the

function as written.

HEXSTR0-01 &PARM: NOT CONSTRUCTOR

OPTION

Explanation: Function is a Constructor but it was used

as Selector.

HEXSTR0-02 OBJECT &OBJECT IS ILLEGAL OR

NOT DEFINED

Explanation: The specified object name is illegal or

not defined via Migration Utility facilities.

HEXSTR0-03 DDNAME IS INVALID OR NOT

SUPPLIED

Explanation: The specified ddname is invalid, or it

has not been coded.

HEXSTR0-04 &WLENGTH IS INVALID LENGTH

VALUE

Explanation: The length is not numeric or it exceeds

the maximum allowed size. Note that in CICS

environment the length cannot exceed 100.

HEXSTR0-05 &DDNAME NOT ALLOWED IN CICS

MODE

User Response: In CICS mode, HEXSTR0 function can

be used to format data into a buffer only.

FILESRV-06 • HEXSTR0-05

Chapter 14. Messages 279

HEXSTR1-01 &PARM: NOT CONSTRUCTOR

OPTION

Explanation: Function is a Constructor but it was used

as Selector.

HEXSTR1-02 OBJECT &OBJECT IS NOT DEFINED

Explanation: The specified object name is illegal or

not defined via Migration Utility facilities.

HEXSTR1-03 DDNAME IS INVALID OR NOT

SUPPLIED

Explanation: The specified ddname is invalid, or it

has not been coded.

HEXSTR1-04 &OBJECT LENGTH EXCEEDS

&BUFSIZE

Explanation: The length is too long or not numeric. If

too long and you truly must convert it to hex, use

HEXSTR1 multiple times, each time doing a section of

the object.

HEXSTR1-05 &OBJECT NOT ALLOWED IN CICS

MODE

User Response: In CICS mode, HEXSTR1 function can

be used to format data into a buffer only.

INITKEY-01 &PARM: NOT CONSTRUCTOR

OPTION

Explanation: Function is a Constructor but it was used

as Selector.

LINKMOD-01 &PARM: NOT SELECTOR OPTION

Explanation: Function is a Selector but it was used as

Constructor.

LINKMOD-02 &PROGRAM: INVALID PROGRAM

NAME

User Response: Code 1 - 8 characters valid program

name.

LINKMOD-03 &WORD: UNDEFINED PARAMETER

Explanation: Parameter is not supported by the

function.

LINKMOD-04 EXIT FUNCTION NOT ENCLOSED

IN PARENTHESES

User Response: All file I/O and exit functions must

be coded enclosed in parentheses. Example: READEXIT

(SEL_READ-FILE ()).

MANGMAP-01 &PARM: NOT CONSTRUCTOR

OPTION

Explanation: Function is a Constructor but it was used

as Selector.

MANGMAP-02 &MAPNAM: UNDEFINED MAP

NAME

Explanation: &MAPNAM is invalid or not defined.

MANGMAP-03 &WORD: UNKNOWN MANGMAP

PARAMETER

Explanation: Parameter is not supported by the

function.

MAPTKEY-01 &OPTION: ILLEGAL FUNCTION

OPTIONS

Explanation: Parameter is not supported by the

function.

MAPTKEY-02 &MAPNAM: UNDEFINED MAP

NAME

Explanation: &MAPNAM is invalid or not defined.

MAPTKEY-03 &WORD: GROUP FIELD IS NOT

DECLARED

Explanation: MAPTKEY function was coded to handle

a non-group key. Refer to the MAPTKEY description in

the Migration Utility reference manual.

MAPTKEY-04 &WORD: KEY IS NOT DEFINED IN

&MAPNAM

Explanation: The specified field is not defined in the

map &MAPNAME.

MSGTXT0-01 &PARM: NOT CONSTRUCTOR

OPTION

Explanation: Function is a Constructor but it was used

as Selector.

MSGTXT1-01 &PARM: NOT CONSTRUCTOR

OPTION

Explanation: Function is a Constructor but it was used

as Selector.

RECVMAP-01 &PARM: NOT SELECTOR OPTION

Explanation: Function is a Selector but it was used as

Constructor.

HEXSTR1-01 • RECVMAP-01

280 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

RECVMAP-02 &MAPNAM: UNDEFINED MAP

NAME

Explanation: &MAPNAM is invalid or not defined.

RECVMAP-03 &WORD: UNKNOWN RECVMAP

PARAMETER

Explanation: Parameter is not supported by the

function.

RECVMAP-04 EXIT FUNCTION NOT ENCLOSED

IN PARENTHESES

User Response: All file I/O and exit functions must

be coded enclosed in parentheses. Example: READEXIT

(SEL_READ-FILE ()).

REPCHR0-01 &WORD: NOT CONSTRUCTOR

OPTION

Explanation: Function is a Constructor but it was used

as Selector.

REPCHR0-02 &WORD: INVALID NUMBER OF

MASK DIGITS

Explanation: The number of significant mask

characters is not numeric.

SENDMAP-01 &PARM: NOT CONSTRUCTOR

OPTION

Explanation: Function is a Constructor but it was used

as Selector.

SENDMAP-02 &MAPNAM: UNDEFINED MAP

NAME

Explanation: &MAPNAM is invalid or not defined.

SENDMAP-03 &WORD: UNKNOWN SENDMAP

PARAMETER

Explanation: Parameter is not supported by the

function.

SENDMAP-04 EXIT FUNCTION NOT ENCLOSED

IN PARENTHESES

User Response: All file I/O and exit functions must

be coded enclosed in parentheses. Example: READEXIT

(SEL_READ-FILE ()).

SENDMAP-05 CURSOR AND CURSORLOC

USAGE CONFLICT

Explanation: CURSOR and CURSORLOC have been

both coded. These options are mutually exclusive.

SENDMSG-01 &PARM: NOT CONSTRUCTOR

OPTION

Explanation: Function is a Constructor but it was used

as Selector.

SENDMSG-02 &MAPNAM: UNDEFINED MAP

NAME

Explanation: &MAPNAM is invalid or not defined.

SENDMSG-03 &WORD: UNKNOWN SENDMSG

PARAMETER

Explanation: Parameter is not supported by the

function.

SENDMSG-04 CODE &CODE: ILLEGAL

COMBINATION

Explanation: CODE (&MSGID &MSGCODE) is

improperly coded.

SENDMSG-05 EXIT FUNCTION NOT ENCLOSED

IN PARENTHESES

User Response: All file I/O and exit functions must

be coded enclosed in parentheses. Example: READEXIT

(SEL_READ-FILE ()).

SETATTR-01 &WORD IS OUT OF SEQUENCE

Explanation: The &WORD cannot be understood by

the function.

SETATTR-02 &MAPNAM: UNDEFINED MAP NAME

Explanation: &MAPNAM is invalid or not defined.

SETATTR-03 &WORD: UNKNOWN ATTRIBUTE

Explanation: Parameter is not supported by the

function.

SETATTR-04 &FIELD NOT IN SCROLL AREA,

ATTR IGNORED.

Explanation: The &FIELD is not in the map scroll

area.

SETATTR-04 &FIELD: NOT IN &MAPNAM

Explanation: The &FIELD is not defined the

referenced map.

RECVMAP-02 • SETATTR-04

Chapter 14. Messages 281

SETATTR-06 &WORD: EXCEEDS MAXIMUM

ATTRIBUTE ELEMENTS

Explanation: Too many attributes are coded. If you

need to code all attributes use multiple SETATTR

functions, each one with fewer attributes.

TSQSRV-01 &PARM: NOT SELECTOR OPTION

Explanation: Function is a Selector but it was used as

Constructor.

TSQSRV-02 &WORD: UNDEFINED FILE NAME

Explanation: &DDNAME is invalid or not defined.

TSQSRV-03 &WORD: INVALID FILE KEY NAME

Explanation: &FILKEY is invalid or not defined.

TSQSRV-04 &IOFUN: UNKNOWN I/O REQUEST

Explanation: I/O request is not supported by the

function.

TSQSRV-05 &WORD: UNKNOWN TSQSRV

PARAMETER

Explanation: Parameter is not supported by the

function.

TSQSRV-06 EXIT FUNCTION NOT ENCLOSED IN

PARENTHESES

User Response: All file I/O and exit functions must

be coded enclosed in parentheses. Example: READEXIT

(SEL_READ-FILE ()).

TSQSRV-07 &QNAME: INVALID QUEUE NAME

Explanation: The TSQ name is invalid as written.

TSQSRV-08 TSQSRV &FILKEY NOT IN WORKING

STORAGE

Explanation: The file key for TSQ must be defined in

working storage. It does not seem to be so.

TSQSRV-09 SYNTAX ERROR. THE ″FROM″

INFORMATION IS INCOMPLETE

Explanation: Improper ″FROM″ parameters.

TSQSRV-10 FILE KEY OF &FLNAME2 IS NOT

UNIQUE

Explanation: The FROM &FILE key is equal to the

key assigned to the TSQ file key. Note that the keys

used by the TSQSRV function must be unique.

TSQSRV-11 SYNTAX ERROR. THE ″FROM″ IS

ILLEGAL FOR ″&IOFUN″

Explanation: The ″FROM″ was coded but it is not

supported by the I/O function.

UPDATE0-01 &PARM: NOT CONSTRUCTOR

OPTION

Explanation: Function is a Constructor but it was used

as Selector.

UPDATE0-02 &MAPNAM: UNDEFINED MAP

NAME

Explanation: &MAPNAM is invalid or not defined.

UPDATE0-03 &DDNAME: UNDEFINED FILE

NAME

Explanation: &DDNAME is invalid or not defined.

UPDATE0-04 &FILKEY: INVALID FILE KEY NAME

Explanation: &FILKEY is invalid or not defined.

UPDATE0-05 A VALID ADD/DEL/UPD MUST BE

PROVIDED

Explanation: No valid action was selected. At least

one must be specified.

UPDATE0-06 XXXXX FUNCTION NOT ENCLOSED

IN PARENTHESES

User Response: All file I/O and exit functions must

be coded enclosed in parentheses. Example: READEXIT

(SEL_READ-FILE ()).

UPDATE0-07 INITIALIZE PARAMETERS ARE

IMPROPER AS CODED

Explanation: INITIALIZE is improper as coded. Refer

to the Migration Utility reference manual.

UPDATE1-01 &PARM: NOT CONSTRUCTOR

OPTION

Explanation: Function is a Constructor but it was used

as Selector.

UPDATE1-02 &MAPNAM: UNDEFINED MAP

NAME

Explanation: &MAPNAM is invalid or not defined.

SETATTR-06 • UPDATE1-02

282 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

UPDATE1-03 &DDNAME: UNDEFINED FILE

NAME

Explanation: &DDNAME is invalid or not defined.

UPDATE1-04 &FILKEY: INVALID FILE KEY NAME

Explanation: &FILKEY is invalid or not defined.

UPDATE1-05 A VALID ADD/DEL/UPD MUST BE

PROVIDED

Explanation: No valid action was selected. At least

one must be specified.

UPDATE1-06 XXXXX FUNCTION NOT ENCLOSED

IN PARENTHESES

User Response: All file I/O and exit functions must

be coded enclosed in parentheses. Example: READEXIT

(SEL_READ-FILE ()).

UPDATE1-07 INITIALIZE PARAMETERS ARE

IMPROPER AS CODED

Explanation: INITIALIZE is improper as coded. Refer

to the Migration Utility reference manual.

UPDATE2-01 &PARM: NOT CONSTRUCTOR

OPTION

Explanation: Function is a Constructor but it was used

as Selector.

UPDATE2-02 &MAPNAM: UNDEFINED MAP

NAME

Explanation: &MAPNAM is invalid or not defined.

UPDATE2-03 &DDNAME: UNDEFINED FILE

NAME

Explanation: &DDNAME is invalid or not defined.

UPDATE2-04 &FILKEY: INVALID OR UNDEFINED

FILE KEY NAME

Explanation: &FILKEY is invalid or not defined.

UPDATE2-05 XXXXX FUNCTION NOT ENCLOSED

IN PARENTHESES

User Response: All file I/O and exit functions must

be coded enclosed in parentheses. Example: READEXIT

(SEL_READ-FILE ()).

UPDATE2-06 INITIALIZE PARAMETERS ARE

IMPROPER AS CODED

Explanation: INITIALIZE is improper as coded. Refer

to the Migration Utility reference manual.

UPDATE3-01 &PARM: NOT CONSTRUCTOR

OPTION

Explanation: Function is a Constructor but it was used

as Selector.

UPDATE3-02 &MAPNAM: UNDEFINED MAP

NAME

Explanation: &MAPNAM is invalid or not defined.

UPDATE3-03 &DDNAME: UNDEFINED FILE

NAME

Explanation: &DDNAME is invalid or not defined.

UPDATE3-04 &FILKEY: INVALID FILE KEY NAME

Explanation: &FILKEY is invalid or not defined.

UPDATE3-05 A VALID ADD/DEL/UPD MUST BE

PROVIDED

Explanation: No valid action was selected. At least

one must be specified.

UPDATE3-06 XXXXX FUNCTION NOT ENCLOSED

IN PARENTHESES

User Response: All file I/O and exit functions must

be coded enclosed in parentheses. Example: READEXIT

(SEL_READ-FILE ()).

UPDATE3-07 INITIALIZE PARAMETERS ARE

IMPROPER AS CODED

Explanation: INITIALIZE is improper as coded. Refer

to the Migration Utility reference manual.

UPDATE4-01 &PARM: NOT CONSTRUCTOR

OPTION

Explanation: Function is a Constructor but it was used

as Selector.

UPDATE4-02 &MAPNAM: UNDEFINED MAP

NAME

Explanation: &MAPNAM is invalid or not defined.

UPDATE1-03 • UPDATE4-02

Chapter 14. Messages 283

UPDATE4-03 &DDNAME: UNDEFINED FILE

NAME

Explanation: &DDNAME is invalid or not defined.

UPDATE4-04 &FILKEY: INVALID FILE KEY NAME

Explanation: &FILKEY is invalid or not defined.

UPDATE4-05 A VALID ADD/DEL/UPD MUST BE

PROVIDED

Explanation: No valid action was selected. At least

one must be specified.

UPDATE4-06 XXXXX FUNCTION NOT ENCLOSED

IN PARENTHESES

User Response: All file I/O and exit functions must

be coded enclosed in parentheses. Example: READEXIT

(SEL_READ-FILE ()).

UPDATE4-07 INITIALIZE PARAMETERS ARE

IMPROPER AS CODED

Explanation: INITIALIZE is improper as coded. Refer

to the Migration Utility reference manual.

UPDATE5-01 &PARM: NOT CONSTRUCTOR

OPTION

Explanation: Function is a Constructor but it was used

as Selector.

UPDATE5-02 &MAPNAM: UNDEFINED MAP

NAME

Explanation: &MAPNAM is invalid or not defined.

UPDATE5-03 &DDNAME: UNDEFINED FILE

NAME

Explanation: &DDNAME is invalid or not defined.

UPDATE5-04 &FILKEY: INVALID OR UNDEFINED

FILE KEY NAME

Explanation: &FILKEY is invalid or not defined.

UPDATE5-05 XXXXX FUNCTION NOT ENCLOSED

IN PARENTHESES

User Response: All file I/O and exit functions must

be coded enclosed in parentheses. Example: READEXIT

(SEL_READ-FILE ()).

XCTLMOD-01 &PARM: NOT SELECTOR OPTION

Explanation: Function is a Selector but it was used as

Constructor.

XCTLMOD-02 &PROGRAM: INVALID PROGRAM

NAME

User Response: Code 1 - 8 characters valid program

name.

XCTLMOD-03 &WORD: UNDEFINED PARAMETER

Explanation: Parameter is not supported by the

function.

UPDATE4-03 • XCTLMOD-03

284 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

PEngiCCL generated messages

ACCL00-001 12 MACNAME :<FUNCTION>

EXPECTED VARIABLE NOT

PROVIDED

Explanation: The format of the ACCL function is

wrong.

User Response: Refer to the coding standards of the

ACCL Directive for the function in error. If the error

occurred on a Migration Utility macro, see note 2 on

page 231.

ACCL00-002 12 MACNAME :<FUNCTION>

UNKNOWN ACCL FUNCTION

Explanation: The displayed function is not an ACCL

Directive Function.

User Response: Correct the function.

ACCL00-003 12 MACNAME :<FUNCTION>

EXPECTED TEXT NOT PROVIDED

Explanation: The format of the ACCL function is

wrong.

User Response: Refer to the coding standards of the

ACCL Directive for the function in error. If the error

occurred on a Migration Utility macro, see note 2 on

page 231.

ACCL00-004 12 VARNAME :<FUNCTION>

INVALID SUBSCRIPT

Explanation: The value contained in the subscript

variable is not a valid subscript.

User Response: Variables used as subscripts must

numeric and one dimensional. If the error occurred on

a Migration Utility macro, see note 2 on page 231.

ACCL00-005 12 VARNAME :<FUNCTION>

IMPROPER DATA OR EXCEEDS MAX

LENGTH

Explanation: The input data string is longer than the

allocated memory for the target Variable.

User Response: Limit input data string to the

maximum allowed by the target variable. If the error

occurred on a Migration Utility macro, see note 2 on

page 231.

ACCL00-006 12 VARNAME :<FUNCTION>

INCONSISTENT DATA FOR

VARIABLE TYPE

Explanation: The input data format is not compatible

with the target Variable data type.

User Response: This can happen if an attempt is

made to set a non numeric value into a SETA or SETB

Variable. Correct the ACCL Directive to use consistent

data. If the error occurred on a Migration Utility macro,

see note 2 on page 231.

ACCL00-007 12 -TEXT- :<FUNCTION> UNDEFINED

INTERNAL REFERENCE LABEL

Explanation: The macro reference label in the ACCL

SETVB function is undefined.

User Response: Either provided the required label or

remove the statement from the SETVB list. If the error

occurred on a Migration Utility macro, see note 2 on

page 231.

ACCL00-008 12 VARNAME :<FUNCTION> VECTOR

DIRECTIVE DOES NOT FOLLOW

Explanation: An ACCL SELECT or an ACCL INDEX

directive is not properly followed by a Vector format

directive.

User Response: Refer to the ACCL SELECT and

ACCL INDEX coding standards. If the error occurred

on a Migration Utility macro, see note 2 on page 231.

ACCL00-009 12 PGMNAME :<FUNCTION>

PROGRAM CANNOT BE LOADED

Explanation: The program cannot be loaded or it was

not located in the load/core library.

User Response: Make sure that you are pointing to

the correct load/core library and that the program

exists. If the error occurred on a Migration Utility

macro, see note 2 on page 231.

ACCL00-010 12 VARNAME :<FUNCTION> VECTOR

VARIABLE SLOTS ARE < 24 BYTES

Explanation: The declared variable-length used in

ACCL SETVB is less than 24 bytes.

User Response: Refer to the coding standards of the

ACCL SETVB directive. If the error occurred on a

Migration Utility macro, see note 2 on page 231.

ACCL00-011 12 VARNAME :<FUNCTION> NOT

ENOUGH SLOTS IN VECTOR

VARIABLE

Explanation: The number of reference labels provided

in the ACCL SETVB list exceeds the dimension of the

specified vector variable.

User Response: Increase the dimension of the vector

variable. If the error occurred on a Migration Utility

macro, see note 2 on page 231.

ACCL00-001 12 • ACCL00-011 12

Chapter 14. Messages 285

ACCL00-012 12 MACNAME :<FUNCTION> ONE OF

VECTOR ARGUMENT EXCEEDS 16

CHR

Explanation: An argument/word in the ACCL SETVB

list exceeds 16 characters.

User Response: The ACCL SETVB arguments/words

can be maximum of 16 characters. Reduce the size of

the argument in error. If the error occurred on a

Migration Utility macro, see note 2 on page 231.

ACCL00-013 12 VARNAME :<FUNCTION>

VARIABLE IS NOT A SETC SYMBOL

Explanation: The specified variable is not a SETC

symbol.

User Response: Refer to the coding standards of the

ACCL Function in error. If the error occurred on a

Migration Utility macro, see note 2 on page 231.

ACCL00-014 12 VARNAME :<FUNCTION>

variable-length IS < 256 BYTES

Explanation: The specified variable allocated memory

is less than 256.

User Response: Refer to the coding standards of the

ACCL Function in error. If the error occurred on a

Migration Utility macro, see note 2 on page 231.

ACCL00-015 12 MACNAME :<FUNCTION>

INVALID PUNCH FILE NAME

Explanation: The punch file name specified is not a

valid ddname.

User Response: Punch file name must start with an

alpha character, it cannot contain special characters,

and it cannot exceed 7 positions. If the error occurred

on a Migration Utility macro, see note 2 on page 231.

ACCL00-016 12 PGMNAME :<FUNCTION>

INVALID USER PROGRAM NAME

Explanation: The program name specified in the

ACCL CALL directive is invalid.

User Response: A program name must start with an

alpha character, it cannot contain special characters,

and it cannot exceed 8 positions. If the error occurred

on a Migration Utility macro, see note 2 on page 231.

ACCL00-017 12 PGMNAME :<FUNCTION>

MAXIMUM USER PROGRAMS

EXCEEDED

Explanation: The maximum number of user loaded

programs was exceeded.

User Response: PEngiCCL will handle maximum of

16 user loaded programs. If the error occurred on a

Migration Utility macro, see note 2 on page 231.

ACCL00-018 12 -TEXT- :<FUNCTION> ILLEGAL OR

NULL VARIABLE IN CALL LIST

Explanation: The ACCL CALL directive requires

exactly one parameter in the call list.

User Response: Correct the problem. If the error

occurred on a Migration Utility macro, see note 2 on

page 231.

ACCL00-019 12 -TEXT- :<FUNCTION> VARIABLE IS

NOT &SYSLIST

Explanation: The variable coded with ACCL BOX

directive is not the &SYSLIST variable.

User Response: The ACCL BOX directive requires the

&SYSLIST variable. Refer to the ACCL BOX directive

coding standards. If the error occurred on a Migration

Utility macro, see note 2 on page 231.

ACCL00-020 12 -TEXT- :<FUNCTION>

FILE/MEMBER NAME IS INVALID

Explanation: The file/member name specified in the

ACCL OPEN directive is invalid.

User Response: The member name must start with an

alpha character, it cannot contain special characters,

and it cannot exceed 8 positions. If the error occurred

on a Migration Utility macro, see note 2 on page 231.

ACCL00-021 12 -TEXT- :<FUNCTION> MAXIMUM

USER FILES EXCEEDED

Explanation: The maximum number of punch files has

been exceeded.

User Response: PEngiCCL can handle maximum of 8

punch files. Reduce the number of punch files. If the

error occurred on a Migration Utility macro, see note 2

on page 231.

ACCL00-022 12 -TEXT- :<FUNCTION> START - END

COLUMNS ARE INVALID

Explanation: The values specified in the ACCL OPEN

directive for Start-End columns and/or start of

continuation and the comment column are inconsistent.

User Response: Refer to the coding standards of the

ACCL OPEN directive. If the error occurred on a

Migration Utility macro, see note 2 on page 231.

ACCL00-023 12 -TEXT- :<FUNCTION> OPTION IS

NOT TOKEN/NOTOKEN

Explanation: The supplied option in the ACCL OPEN

or ACCL READ directive is invalid.

User Response: An option can be TOKEN,

ACCL00-012 12 • ACCL00-023 12

286 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

NOTOKEN, or left out. If the error occurred on a

Migration Utility macro, see note 2 on page 231.

ACCL00-024 12 -TEXT- :<FUNCTION>

FILE/MEMBER ALREADY EXISTS

Explanation: The new member name in the ACCL

RENAME already exists.

User Response: Choose a unique name. If the error

occurred on a Migration Utility macro, see note 2 on

page 231.

ACCL00-025 12 -TEXT- :<FUNCTION>

FILE/MEMBER DOES NOT EXIST

Explanation: The member name to be renamed by

ACCL RENAME does not exist.

User Response: Provide the correct name. If the error

occurred on a Migration Utility macro, see note 2 on

page 231.

ACCL00-026 12 -TEXT- :<FUNCTION>

FILE/MEMBER NOT CLOSED

Explanation: ACCL OPEN was attempted without

closing the previous OPEN.

User Response: Issue ACCL CLOSE before attempting

this open. If the error occurred on a Migration Utility

macro, see note 2 on page 231.

ACCL00-001 12 MACNAME :<FUNCTION>

ARGUMENTS ARE IMPROPER AS

WRITTEN

Explanation: The format of the ACCL function is

wrong.

User Response: Refer to the coding standards of the

ACCL Directive for the function in error. If the error

occurred on a Migration Utility macro, see note 2 on

page 231.

ACTR01-001 12 MACNAME :ACTR COUNTER

EXCEEDED

Explanation: The number of PEngiCCL internal macro

branch instructions has been exceeded. The

MACNAME is the macro in error. This was probably

caused by an infinite loop, or the ACTR counter is not

sufficient enough to accommodate macro needs.

User Response: Check for possible loops or increase

the ACTR counter. If the error occurred on a Migration

Utility macro, see note 2 on page 231.

ADOIF0-001 12 LABEL :UNDEFINED INTERNAL

REFERENCE LABEL

Explanation: The internal macro reference label is

undefined.

User Response: Add the necessary internal reference

label. If the error occurred on a Migration Utility

macro, see note 2 on page 231.

ADOIF0-002 12 LABEL :CANNOT BRANCH TO

ITSELF, WOULD CAUSE LOOP

Explanation: An ADOIF directive target reference

label refers to the directive itself.

User Response: Correct the erroneous branch. If the

error occurred on a Migration Utility macro, see note 2

on page 231.

ADOIF0-003 12 LABEL :INTERNAL REFERENCE

LABEL LENGTH ERROR

Explanation: The internal macro reference label

exceeds 12 characters or it is less than 2 characters.

User Response: Correct the erroneous reference label.

If the error occurred on a Migration Utility macro, see

note 2 on page 231.

ADOIF0-004 12 LABEL :THE SUBROUTINE WAS

ALREADY USED IN NEST

Explanation: A recursive use of the ADOIF directive

for the same macro subroutine has been detected. That

is, the routine labeled with the LABEL internal macro

reference name was invoked for second time from the

ADO nest.

User Response: Correct the erroneous reference label.

If the error occurred on a Migration Utility macro, see

note 2 on page 231.

ADOIF0-005 12 LABEL :EXCEEDS MAXIMUM

NUMBER OF ALLOWED NESTS

Explanation: Maximum number of PEngiCCL

subroutine nests has been exceeded.

User Response: Reduce the number of subroutine

nests by reorganizing macro code. If the error occurred

on a Migration Utility macro, see note 2 on page 231.

ADOIF0-006 12 :LOOP COUNTER OF ZERO IS

ILLEGAL

Explanation: The ADOIF directive loop counter

expression resulted in zero or a negative number after

it had been evaluated.

User Response: Make sure that the loop counter

expression results in a positive number. If the error

ACCL00-024 12 • ADOIF0-006 12

Chapter 14. Messages 287

occurred on a Migration Utility macro, see note 2 on

page 231.

ADO000-001 12 LABEL :UNDEFINED INTERNAL

REFERENCE LABEL

Explanation: The internal macro reference label is

undefined.

User Response: Add the necessary internal reference

label. If the error occurred on a Migration Utility

macro, see note 2 on page 231.

ADO000-002 12 LABEL :CANNOT BRANCH TO

ITSELF, WOULD CAUSE LOOP

Explanation: An ADO directive target reference label

refers to the directive itself.

User Response: Correct the erroneous branch. If the

error occurred on a Migration Utility macro, see note 2

on page 231.

ADO000-003 12 LABEL :INTERNAL REFERENCE

LABEL LENGTH ERROR

Explanation: The internal macro reference label

exceeds 12 characters or it is less than 2 characters.

User Response: Correct the erroneous reference label.

If the error occurred on a Migration Utility macro, see

note 2 on page 231.

ADO000-004 12 LABEL :THE SUBROUTINE WAS

ALREADY USED IN NEST

Explanation: A recursive use of the ADO directive for

the same macro subroutine has been detected. That is,

the routine labeled with the LABEL internal macro

reference name was invoked for second time from the

ADO nest.

User Response: Correct the erroneous reference label.

If the error occurred on a Migration Utility macro, see

note 2 on page 231.

ADO000-005 12 LABEL :EXCEEDS MAXIMUM

NUMBER OF ALLOWED NESTS

Explanation: Maximum number of PEngiCCL

subroutine nests has been exceeded.

User Response: Reduce the number of subroutine

nests by reorganizing macro code. If the error occurred

on a Migration Utility macro, see note 2 on page 231.

ADO000-006 12 :LOOP COUNTER OF ZERO IS

ILLEGAL

Explanation: The ADOIF directive loop counter

expression resulted in zero or a negative number after

it had been evaluated.

User Response: Make sure that the loop counter

expression results in a positive number. If the error

occurred on a Migration Utility macro, see note 2 on

page 231.

AGO000-001 12 LABEL :UNDEFINED INTERNAL

REFERENCE LABEL

Explanation: The internal macro reference label is

undefined.

User Response: Add the necessary internal reference

label. If the error occurred on a Migration Utility

macro, see note 2 on page 231.

AGO000-002 12 LABEL :ILLEGAL TARGET

REFERENCE LABEL, WOULD CAUSE

LOOP

Explanation: An Ago directive target reference label

refers to the directive itself.

User Response: Correct the erroneous branch. If the

error occurred on a Migration Utility macro, see note 2

on page 231.

AGO000-003 12 LABEL :INTERNAL REFERENCE

LABEL LENGTH ERROR

Explanation: The internal macro reference label

exceeds 12 characters or it is less than 2 characters.

User Response: Correct the erroneous reference label.

If the error occurred on a Migration Utility macro, see

note 2 on page 231.

AGO000-004 12 MACNAME :ACTR COUNTER

EXCEEDED

Explanation: The number of PEngiCCL internal macro

branch instructions has been exceeded. The

MACNAME is the macro in error. This was probably

caused by an infinite loop, or the ACTR counter is not

sufficient enough to accommodate macro needs.

User Response: Check for possible loops or increase

the ACTR counter. If the error occurred on a Migration

Utility macro, see note 2 on page 231.

AGO001-001 12 LABEL :UNDEFINED INTERNAL

REFERENCE SYMBOL

Explanation: The internal macro reference label is

undefined.

User Response: Add the necessary internal reference

label. If the error occurred on a Migration Utility

macro, see note 2 on page 231.

ADO000-001 12 • AGO001-001 12

288 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

AGO001-002 12 LABEL :CANNOT BRANCH TO

ITSELF, WOULD CAUSE LOOP

Explanation: An Ago directive target reference label

refers to the directive itself.

User Response: Correct the erroneous branch. If the

error occurred on a Migration Utility macro, see note 2

on page 231.

AGO001-003 12 LABEL :INTERNAL REFERENCE

SYMBOL LENGTH ERROR

Explanation: The internal macro reference label

exceeds 12 characters or it is less than 2 characters.

User Response: Correct the erroneous reference label.

If the error occurred on a Migration Utility macro, see

note 2 on page 231.

AGO001-004 12 LABEL :INTERNAL REFERENCE

SYMBOL IS MISSING

Explanation: The internal macro reference label is

undefined.

User Response: Add the necessary internal reference

label. If the error occurred on a Migration Utility

macro, see note 2 on page 231.

AGO001-005 12 MACNAME :ACTR COUNTER

EXCEEDED

Explanation: The number of PEngiCCL internal macro

branch instructions has been exceeded. The

MACNAME is the macro in error. This was probably

caused by an infinite loop, or the ACTR counter is not

sufficient enough to accommodate macro needs.

User Response: Check for possible loops or increase

the ACTR counter. If the error occurred on a Migration

Utility macro, see note 2 on page 231.

AIF000-001 12 :LOGICAL/RELATIONAL TERM IS

EXPECTED

Explanation: An SLE is expected in the PEngiCCL

internal protocol but it cannot be found. This indicates

a problem with PEngiCCL Macro Preprocessor.

User Response: Contact PEngiCCL software support

center.

AIF000-001 12 :PEngiCCL LOGIC ERROR, SLE IS

MISSING

Explanation: An SLE is expected in the PEngiCCL

internal protocol but it cannot be found. This indicates

a problem with PEngiCCL Macro Preprocessor.

User Response: Contact PEngiCCL software support

center.

AIF000-002 12 :INCONSISTENT DATA TYPE IN

RELATION

Explanation: An SLC, SAE or ELE is expected in the

PEngiCCL internal protocol but it cannot be found.

This indicates a problem with PEngiCCL Macro

Preprocessor.

User Response: Contact PEngiCCL software support

center.

AIF000-002 12 :PEngiCCL LOGIC ERROR, SLC, SAE

OR ELE IS MISSING

Explanation: An SLC, SAE or ELE is expected in the

PEngiCCL internal protocol but it cannot be found.

This indicates a problem with PEngiCCL Macro

Preprocessor.

User Response: Contact PEngiCCL software support

center.

AIF000-003 12 :INCONSISTENT DATA TYPE IN

RELATION

Explanation: The work buffer cannot accommodate

the requirements of the conditional expression.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters. If the error

occurred on a Migration Utility macro, see note 2 on

page 231.

AIF000-003 12 :INTERMEDIATE WORK BUFFER IS

TOO SMALL

Explanation: The work buffer cannot accommodate

the requirements of the conditional expression.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters. If the error

occurred on a Migration Utility macro, see note 2 on

page 231.

AIF000-004 12 :UNKNOWN RELATIONAL

OPERATOR

Explanation: The maximum number of bracketed

expressions that can be supported by PEngiCCL has

been exceeded.

User Response: Your are limited to the maximum of

64 bracketed expressions in a single conditional request.

Limit the number of bracketed expressions to the

maximum of 64. If the error occurred on a Migration

Utility macro, see note 2 on page 231.

AGO001-002 12 • AIF000-004 12

Chapter 14. Messages 289

AIF000-004 12 :THE NUMBER OF 64 BRACKETED

EXPRESSIONS EXCEEDED

Explanation: The maximum number of bracketed

expressions that can be supported by PEngiCCL has

been exceeded.

User Response: Your are limited to the maximum of

64 bracketed expressions in a single conditional request.

Limit the number of bracketed expressions to the

maximum of 64. If the error occurred on a Migration

Utility macro, see note 2 on page 231.

AIF000-005 12 :UNKNOWN RELATIONAL

OPERATOR AIF000-005 12

:EXPRESSION PROTOCOL CHAIN IS

BROKEN

Explanation: The logical expression protocol chain is

broken. This indicates a problem with PEngiCCL Macro

Preprocessor.

User Response: Contact PEngiCCL software support

center.

AIF000-006 12 :MISSING OPERAND IN

EXPRESSION

Explanation: The PEngiCCL NUL protocol is outside

of the answer slot range. The logical expression

protocol chain is broken. This indicates a problem with

PEngiCCL Macro Preprocessor.

User Response: Contact PEngiCCL software support

center.

AIF000-006 12 :NUL PROTOCOL IS OUT OF

RANGE

Explanation: The PEngiCCL NUL protocol is outside

of the answer slot range. The logical expression

protocol chain is broken. This indicates a problem with

PEngiCCL Macro Preprocessor.

User Response: Contact PEngiCCL software support

center.

AIF000-007 12 :LOGICAL/RELATIONAL TERM IS

EXPECTED

Explanation: The work buffer cannot accommodate

the requirements of the conditional expression.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters. If the error

occurred on a Migration Utility macro, see note 2 on

page 231.

AIF000-007 12 :INTERMEDIATE WORK BUFFER IS

TOO SMALL

Explanation: The work buffer cannot accommodate

the requirements of the conditional expression.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters. If the error

occurred on a Migration Utility macro, see note 2 on

page 231.

AIF000-008 12 :DATA VALUE IS EXPECTED IN

RELATION

Explanation: The work buffer cannot accommodate

the requirements of the conditional expression.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters. If the error

occurred on a Migration Utility macro, see note 2 on

page 231.

AIF000-008 12 :INTERMEDIATE WORK BUFFER IS

TOO SMALL

Explanation: The work buffer cannot accommodate

the requirements of the conditional expression.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters. If the error

occurred on a Migration Utility macro, see note 2 on

page 231.

AIF000-009 12 :INCONSISTENT DATA TYPE IN

RELATION

Explanation: The maximum number of bracketed

expressions that can be supported by PEngiCCL has

been exceeded.

User Response: Your are limited to the maximum of

64 bracketed expressions in a single conditional request.

Limit the number of bracketed expressions to the

maximum of 64. If the error occurred on a Migration

Utility macro, see note 2 on page 231.

AIF000-009 12 :THE NUMBER OF 64 BRACKETED

EXPRESSIONS EXCEEDED

Explanation: The maximum number of bracketed

expressions that can be supported by PEngiCCL has

been exceeded.

User Response: Your are limited to the maximum of

64 bracketed expressions in a single conditional request.

Limit the number of bracketed expressions to the

maximum of 64. If the error occurred on a Migration

AIF000-004 12 • AIF000-009 12

290 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Utility macro, see note 2 on page 231.

AIF000-014 12 -TEXT- :LOGICAL/RELATIONAL

TERM IS EXPECTED

Explanation: A data item or a bracketed expression is

not followed by a logical or relational operator.

User Response: Make sure that your conditional

expression complies with PEngiCCL conditional

expression coding rules. If the error occurred on a

Migration Utility macro, see note 2 on page 231.

AIF000-015 12 -TEXT- :DATA VALUE IS EXPECTED

IN RELATION

Explanation: Two or more logical or relational

operators have been coded in succession.

User Response: Make sure that your conditional

expression complies with PEngiCCL conditional

expression coding rules. If the error occurred on a

Migration Utility macro, see note 2 on page 231.

AIF000-016 12 -TEXT- :INCONSISTENT DATA TYPE

IN RELATION

Explanation: A logical or relational operation has been

coded for data items of different format, that is,

numeric data and alphanumeric data.

User Response: Make sure that the data items in

relation are of the same type. If the error occurred on a

Migration Utility macro, see note 2 on page 231.

AIF000-018 12 -TEXT- :LOGICAL OPERATOR IS

EXPECTED

Explanation: A logical operator or a Boolean is

expected in the conditional expression but none found.

This error is caused while evaluating the logical ″NOT″.

User Response: Make sure that your conditional

expression complies with PEngiCCL conditional

expression coding rules. If the error occurred on a

Migration Utility macro, see note 2 on page 231.

AIF000-019 12 -TEXT- :BOOLEAN IS EXPECTED IN

EXPRESSION

Explanation: A Boolean is expected in the conditional

expression but none found. This error is caused while

evaluating the logical ″NOT″.

User Response: Make sure that your conditional

expression complies with PEngiCCL conditional

expression coding rules. If the error occurred on a

Migration Utility macro, see note 2 on page 231.

AIF000-020 12 -TEXT- :BOOLEAN IS EXPECTED IN

EXPRESSION

Explanation: A Boolean is expected in conditional

expression but none found. This error is caused while

evaluating the logical ″OR″.

User Response: Make sure that your conditional

expression complies with PEngiCCL conditional

expression coding rules. If the error occurred on a

Migration Utility macro, see note 2 on page 231.

AIF000-021 12 -TEXT- :EXPECTING A LOGICAL

OPERATOR

Explanation: A logical operator is expected in

conditional expression but none found. This error is

caused while evaluating the logical ″OR″.

User Response: Make sure that your conditional

expression complies with PEngiCCL conditional

expression coding rules. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

AIF000-022 12 -TEXT- :EXPECTING A BOOLEAN IN

2ND OPERAND

Explanation: A Boolean is expected in second operand

of conditional expression but none found. This error is

caused while evaluating the logical ″OR″.

User Response: Make sure that your conditional

expression complies with PEngiCCL conditional

expression coding rules. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

AIF000-023 12 -TEXT- :EXPECTING LOGICAL OR

IN EXPRESSION

Explanation: A logical operator is expected in

conditional expression but none found. This error is

caused while evaluating the logical ″OR″.

User Response: Make sure that your conditional

expression complies with PEngiCCL conditional

expression coding rules. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

AIF000-024 12 -TEXT- :ILLEGAL LOGICAL

EXPRESSION

Explanation: The outcome of the conditional

expression did not result in a valid Boolean. This is

probably a PEngiCCL preprocessor error.

User Response: Contact PEngiCCL software support

center.

AIF000-014 12 • AIF000-024 12

Chapter 14. Messages 291

AIF000-025 12 -TEXT- :EXPECTING BOOLEAN IN

1ST OPERAND

Explanation: A Boolean is expected in first operand of

conditional expression but none found. This error is

caused while evaluating the logical ″AND″.

User Response: Make sure that your conditional

expression complies with PEngiCCL conditional

expression coding rules. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

AIF000-026 12 -TEXT- :EXPECTING UPCODE OR

BOOLEAN

Explanation: A logical operator is expected in

conditional expression but none found. This error is

caused while evaluating the logical ″AND″.

User Response: Make sure that your conditional

expression complies with PEngiCCL conditional

expression coding rules. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

AIF000-027 12 -TEXT- :BOOLEAN IS EXPECTED IN

EXPRESSION

Explanation: A Boolean is expected in second operand

of conditional expression but none found. This error is

caused while evaluating the logical ″AND″.

User Response: Make sure that your conditional

expression complies with PEngiCCL conditional

expression coding rules. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

AIF000-028 12 -TEXT- :EXPECTING LOGICAL AND

Explanation: A logical ″AND″ operator is expected in

conditional expression but none found. This error is

caused while evaluating the logical ″AND″.

User Response: Make sure that your conditional

expression complies with PEngiCCL conditional

expression coding rules. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

ALOC00-001 12 :PREPROCESSOR PROGRAM

LOGIC ERROR

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

ANAC00-001 12 MACNAME :PREPROCESSOR

PROGRAM LOGIC ERROR

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

ANAC00-002 12 VARNAME :SUBSCRIPT EXCEEDS

DECLARED VARIABLE DIMENSION

Explanation: The computed subscript value exceeds

the declared variable dimension.

User Response: If you are trying to write your own

PEngiCCL macro, you must make sure that the

subscript does not exceed the declared variable

dimension. If the error occurred on a Migration Utility

macro, see note 2 on page 231.

ANUC00-001 12 MACNAME :PREPROCESSOR

PROGRAM LOGIC ERROR

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

ANUC00-002 12 VARNAME :SUBSCRIPT EXCEEDS

DECLARED VARIABLE DIMENSION

Explanation: The computed subscript value exceeds

the declared variable dimension.

User Response: You must make sure that the

subscript does not exceed the declared variable

dimension. If the error occurred on a Migration Utility

macro, see note 2 on page 231.

APIC00-001 12 MACNAME :PREPROCESSOR

PROGRAM LOGIC ERROR

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

APIC00-002 12 VARNAME :SUBSCRIPT EXCEEDS

DECLARED VARIABLE DIMENSION

Explanation: The computed subscript value exceeds

the declared variable dimension.

User Response: You must make sure that the

subscript does not exceed the declared variable

dimension. If the error occurred on a Migration Utility

macro, see note 2 on page 231.

AIF000-025 12 • APIC00-002 12

292 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

APIC00-003 12 VARNAME :DATA STRING

EXCEEDS MAXIMUM VARIABLE SIZE

Explanation: The data string (COBOL field picture) is

longer than the target variable VARNAME can

accommodate.

User Response: You must make sure that the target

variable can accommodate your data strings. If the

error occurred on a Migration Utility macro, see note 2

on page 231.

APIC00-004 12 PICTURE :PICTURE IS TOO LONG

OR BAD DUPLICATION FACTOR

Explanation: The COBOL field picture exceeds 30

characters or it is improperly coded.

User Response: Correct the picture.

APIC00-005 12 PICTURE :ILLEGAL PICTURE

FORMAT OR NO DATA INCLUDED

Explanation: The displayed picture contains illegal

COBOL picture characters.

User Response: Correct the picture.

APIC00-006 12 PICTURE :RECURSIVE USE OF

DECIMAL POINT

Explanation: Two or more decimal points have been

detected in the COBOL picture.

User Response: Remove the extraneous decimal

points.

APIC00-008 12 PICTURE :PICTURE CONTAINS

ILLEGAL CHARACTERS

Explanation: The displayed picture contains illegal

COBOL picture characters.

User Response: Correct the picture.

APIC00-009 12 PICTURE :PICTURE CONTAINS

NUMERIC AND ALPHANUM

SYMBOLS

Explanation: The displayed picture contains a mixture

of numeric and alphanumeric picture characters.

User Response: Correct the picture.

APIC00-010 12 PICTURE :PICTURE EXCEEDS

NUMERIC LIMIT OF 31 CHARACTERS

Explanation: The picture represents a number of more

than 31 digits long.

User Response: Correct the picture.

APUNCH-001 12 :DATA MUST BE IN QUOTES FOR

PUNCH DIRECTIVE

Explanation: A PUNCH directive has been attempted

to punch non-quoted data.

User Response: The punch directive accepts only

quoted data strings. Enclose data in quotes. If the error

occurred on a Migration Utility macro, see note 2 on

page 231.

APUNCH-002 12 :UNPAIRED/ILLEGAL QUOTES IN

QUOTED STRING

Explanation: An unpaired number of quotes has been

detected in a quoted data string.

User Response: Correct the data string to contain an

even number of quotes. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

AREPRO-001 12 :REPRO IS ILLEGALLY

FOLLOWED BY A DIRECTIVE

Explanation: A REPRO directive was followed by

another directive.

User Response: The Repro directive can be used to

reproduce text cards only.

ASMPUN-001 12 -TEXT- :EXPANDED

PARAMETERS EXCEED 1 LINE

Explanation: A text line inside ASM macro type

exceeds 1 line.

User Response: Adjust the text so that it is less than

72 bytes long.

ASOC00-001 12 MACNAME :PREPROCESSOR

PROGRAM LOGIC ERROR

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

ASORT0-001 12 :PREPROCESSOR ERROR, ASORT

EXPRESSION IS MISSING

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

APIC00-003 12 • ASORT0-001 12

Chapter 14. Messages 293

ASORT0-002 12 VARNAME :FSASORT1 - SORT

ERROR

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

ATRC00-001 12 MACNAME :PREPROCESSOR

PROGRAM LOGIC ERROR

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

ATRC00-002 12 VARNAME :SUBSCRIPT EXCEEDS

DECLARED VARIABLE DIMENSION

Explanation: The computed subscript value exceeds

the declared variable dimension.

User Response: You must make sure that the

subscript does not exceed the declared variable

dimension. If the error occurred on a Migration Utility

macro, see note 2 on page 231.

COBMNL-001 12 MACNAME :NUMBER OF

NESTED MACROS EXCEEDS

MAXIMUM

Explanation: The number of supported nested macros

has been exceeded.

User Response: Check to make sure that you are not

invoking macros recursively from a nested macro. If

you absolutely need additional macro nesting capacity,

contact your PEngiCCL software administrator. The

support for nested macros is generated at PEngiCCL

installation time. If the error occurred on a Migration

Utility macro, see note 2 on page 231.

COBMNL-002 12 MACNAME :FSCOBMNL LOGIC

ERROR, CANNOT LOCATE MACRO

NAME

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

COBMNL-003 12 MACNAME :MACRO NAME IS

TOO LONG

Explanation: The macro name exceeds 12 characters.

User Response: Code the correct macro name. Note

that the macro name can be up to 8 characters long on

MVS/XA™ and VM/CMS operating systems, because

of the PDS and CMS member naming conventions.

However, temporary macro names can be up to 12

characters long. If the error occurred inside a Migration

Utility macro, contact Migration Utility software

support center.

COBMNL-004 12 MACNAME :ILLEGAL

DECLARATION OF MACRO NAME

Explanation: The _ macro delimiter was specified

without a macro name following it.

User Response: Supply the macro name.

COBRUN-001 12 VARNAME :COMPUTED

SUBSCRIPT IS ZERO, IT IS ILLEGAL

Explanation: The computed subscript value is zero.

User Response: You must make sure that the

subscript is not zero. If the error occurred on a

Migration Utility macro, see note 2 on page 231.

COBRUN-002 12 DIRECTIVE :UNDEFINED

PROGRAM IN FSDIRTAB

Explanation: PEngiCCL was improperly installed. A

program used by the displayed DIRECTIVE was not

properly resolved by the link edit program.

User Response: Contact your PEngiCCL software

administrator.

CPYRUN-001 12 :COPY DIRECTIVE BUT NO

MEMBER SPECIFIED

Explanation: An FSCOPY directive was coded without

a copy member name.

User Response: Specify the member name to be

copied following the FSCOPY directive.

CPYRUN-002 12 :IMPROPER SPECIFICATION OF

MEMBER NAME

Explanation: An FSCOPY directive was coded without

a copy member name.

User Response: Specify the member name to be

copied following the FSCOPY directive.

CPYRUN-003 12 COPYNAME :COPY MEMBER

NAME IS TOO LONG

Explanation: The FSCOPY member name exceeds 12

characters.

User Response: Code the correct FSCOPY member

name. Note that the copy name can be up to 8

characters long on MVS/XA and VM/CMS operating

systems, because of PDS and CMS member naming

conventions.

ASORT0-002 12 • CPYRUN-003 12

294 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

CPYRUN-004 12 COPYNAME :NUMBER OF

NESTED COPY EXCEEDS MAXIMUM

Explanation: The number of supported nested

FSCOPY directives has been exceeded.

User Response: If you absolutely need additional

FSCOPY nesting capacity, contact your PEngiCCL

software administrator. The support for nested FSCOPY

directives is generated at PEngiCCL installation time.

CPYRUN-005 12 COPYNAME :COPY ALREADY

USED IN NEST (THIS NEST IS

ILLEGAL)

Explanation: The COPYNAME copy member has been

previously copied in this FSCOPY nest.

User Response: Only unique member names can be

included in a FSCOPY directive nest, since duplicate

names could cause an infinite FSCOPY loop. If you are

in a need of multiple copies of the same member,

consider issuing separate FSCOPY directives for each

one, or write a PEngiCCL macro instead.

CPYUSR-001 12 COPYNAME :NUMBER OF

NESTED COPY EXCEEDS MAXIMUM

Explanation: The number of supported nested

FSCOPY/COPY directives has been exceeded.

User Response: If you absolutely need additional

FSCOPY/COPY nesting capacity, contact your

PEngiCCL software administrator. The support for

nested FSCOPY/COPY directives is generated at

PEngiCCL installation time.

CPYUSR-002 12 COPYNAME :COPY ALREADY

USED IN NEST (THIS NEST IS

ILLEGAL)

Explanation: The COPYNAME copy member has been

previously copied in this FSCOPY nest.

User Response: Only unique member names can be

included in a FSCOPY directive nest, since duplicate

names could cause an infinite FSCOPY loop. If you are

in a need of multiple copies of the same member,

consider issuing a separate FSCOPY directives for each

one, or write a PEngiCCL macro instead.

DEFADO-001 12 -TEXT- :INTERMEDIATE OUTPUT

EXPRESSION IS TOO LONG

Explanation: The work buffer cannot accommodate

the ADO expression in the preprocessed format. The

-TEXT- is the data string which caused the overflow.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters. However, the

preferred way would be to shrink the ADO expression.

If the error occurred on a Migration Utility macro,

contact Migration Utility software support center.

DEFADO-002 12 -TEXT- :UNPAIRED LEFT PAREN

IN EXPRESSION

Explanation: The internal target reference label

expression in the ADO directive exceeds 256 characters.

User Response: Reduce the expression to below 256

characters in length. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

DEFADO-003 12 :ILLEGAL INTERNAL REFERENCE

LABEL

Explanation: The internal target reference label is not

supplied.

User Response: The internal target reference labels

must start with a “.” (period) and contain at least one

character. Correct the label. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

DEFADO-004 12 -TEXT- :UNPAIRED RIGHT PAREN

IN EXPRESSION

Explanation: There are more right parentheses than

left parentheses in the internal target reference label or

loop counter expression.

User Response: Make sure that you have an even

number of left and right parentheses. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFADO-005 12 :INTERMEDIATE INPUT

EXPRESSION IS TOO LONG

Explanation: Refer to the DEFADO-002 message.

DEFADO-006 12 -TEXT- :INTERNAL REFERENCE

LABEL IS MISSING

Explanation: The internal target reference label is not

supplied.

User Response: The internal target reference labels

must start with a “.” (period) and contain at least one

character. Correct the label. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

DEFADO-007 12 -TEXT- :PERIOD IS MISSING IN

REFERENCE LABEL EXPRESSION

Explanation: The internal target reference label is not

supplied.

User Response: The internal target reference labels

must start with a “.” (period) and contain at least one

CPYRUN-004 12 • DEFADO-007 12

Chapter 14. Messages 295

character. Correct the label. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

DEFADO-008 12 LABEL :INTERNAL REFERENCE

LABEL IS TOO LONG

Explanation: The internal target reference label

exceeds 12 characters.

User Response: Limit your label to maximum of 12

characters. Note that this does not include the loop

counter expression, if supplied. If the error occurred on

a Migration Utility macro, contact Migration Utility

software support center.

DEFADO-009 12 -TEXT- :ILLEGAL ADO/ADOIF

LOOP COUNTER EXPRESSION

Explanation: The tail-end of the internal target

reference label expression is illegal as written.

User Response: Correct or truncate the unneeded data

string. If the error occurred on a Migration Utility

macro, contact Migration Utility software support

center.

DEFCCL-001 12 MACNAME :INTERMEDIATE

EXPRESSION IS TOO LONG

Explanation: The ACCL directive parameters are too

long.

User Response: Reduce the size of ACCL directive

list/parameters.

DEFCCL-002 12 -TEXT- :STRING EXCEEDS 256

CHARACTERS

Explanation: A single data string exceeds 256

characters.

User Response: Reduce the string in error to less than

256 characters.

DEFCCL-003 12 -TEXT- :INVALID ACCL SERVICE

CODE

Explanation: An invalid/unknown ACCL function has

been detected.

User Response: Refer to the PEngiCCL Manual for

supported ACCL functions.

DEFCCL-004 12 -TEXT- :EXPECTING ACCL

DIRECTIVE

Explanation: The directive is not an ACCL directive.

User Response: None. The FSDEFCCL program

supports only ACCL directive.

DEFCOM-001 12 MACNAME :INPUT DATA

LENGTH IS ZERO

Explanation: The internal macro parameters work

buffer has been corrupted.

User Response: Contact PEngiCCL software support

center.

DEFCOM-002 12 -TEXT- :MACRO LABEL IS TOO

LONG

Explanation: The macro label (paragraph name)

exceeds 12 characters.

User Response: Reduce the label size to maximum of

12 characters. If the error occurred on a Migration

Utility macro, contact Migration Utility software

support center.

DEFCOM-003 12 MACNAME :MACRO NAME IS

MISSING

Explanation: The internal macro parameters work

buffer has been corrupted.

User Response: Contact PEngiCCL software support

center.

DEFCOM-005 12 MACNAME :MACRO NAME IS

TOO LONG

Explanation: The macro name exceeds 12 characters.

User Response: Code the correct macro name. Note

that the macro name can be up to 8 characters long on

MVS/XA and VM/CMS operating systems, because of

the PDS and CMS member naming conventions.

However, the temporary macro names can be up to 12

characters long.

DEFCOM-006 12 VARNAME :MAXIMUM NUMBER

OF POSITIONAL VARIABLES

EXCEEDED

Explanation: The maximum number of positional

parameters that can be supported by PEngiCCL has

been exceeded.

User Response: The maximum number of positional

parameters supported by PEngiCCL is 32,767. It is

unlikely that anyone would intentionally code more

than 32,767 positional parameters for a single macro

invocation. The number of parameters is further limited

by the work buffer size. Check to make sure that the

macro end delimiter (;) is properly placed at the end of

macro parameters, as this could cause extraneous data

to be included as part of the macro parameters.

DEFADO-008 12 • DEFCOM-006 12

296 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

DEFCOM-008 12 VARNAME :UNDEFINED

KEYWORD PARAMETER FOR THIS

MACRO

Explanation: The VARNAME is an undefined or

undeclared keyword parameter, so the keyword is not

supported by the macro.

User Response: You are allowed to use only those

keyword parameters which have been declared in the

macro model. If this is a Migration Utility macro, refer

to the appropriate section in this document for valid

keywords.

DEFCOM-009 12 -TEXT- :END QUOTE IS MISSING

IN QUOTED STRING

Explanation: An uneven number of quotes has been

detected in a data string which starts with a quote.

User Response: A data string which is enclosed in

quotes must contain an even number of quotes. Add

the necessary quote.

DEFCOM-010 12 -TEXT- :UNPAIRED QUOTES IN

QUOTED STRING

Explanation: An uneven number of quotes has been

detected in a data string which starts with a quote.

User Response: A data string which is enclosed in

quotes must contain an even number of quotes. Add

the necessary quote.

DEFCOM-011 12 -TEXT- :RIGHT PAREN IS

MISSING IN SUBLISTED STRING

Explanation: There are more left than right

parentheses in the sublist, which are not a part of a

quoted string. The -TEXT- is the tail-end of the last data

examined.

User Response: Make sure that you have an even

number of left and right parentheses.

DEFCOM-012 12 -TEXT- :RIGHT PAREN IS

MISSING IN SUBLISTED STRING

Explanation: There are more left than right

parentheses in the sublist, which are not a part of a

quoted string. The -TEXT- is the tail-end of the last data

examined.

User Response: Make sure that you have an even

number of left and right parentheses.

DEFCOM-013 12 -TEXT- :IMPROPER

TERMINATION OF SUBLISTED

STRING

Explanation: There are more left than right

parentheses in the sublist, which are not a part of a

quoted string, or the last character of the sublist is not

a right parenthesis. The -TEXT- is the tail-end of the

last data examined.

User Response: Make sure that you have an even

number of left and right parentheses and that the

sublist ends with a right parenthesis.

DEFCOM-014 12 -TEXT- :UNPAIRED LEFT PAREN

IN SUBLISTED STRING

Explanation: There are more left than right

parentheses in the sublist, which are not a part of a

quoted string. The -TEXT- is the tail-end of the last data

examined.

User Response: Make sure that you have an even

number of left and right parentheses.

DEFCOM-015 12 -TEXT- :UNPAIRED RIGHT

PAREN IN SUBLISTED STRING

Explanation: There are more right than left

parentheses in the sublist, which are not a part of a

quoted string. The -TEXT- is the tail-end of the last data

examined.

User Response: Make sure that you have the same

number of left parentheses and right parentheses.

DEFCOM-016 12 -TEXT- :UNPAIRED PARENS IN

SUBLISTED STRING

Explanation: The number of left parentheses is not

equal to the number of right parentheses in the sublist,

which are not a part of a quoted string. The -TEXT- is

the tail-end of the last data examined.

User Response: Make sure that you have an even

number of left and right parentheses.

DEFCOM-017 12 -TEXT- :UNPAIRED QUOTES IN

QUOTED STRING

Explanation: An uneven number of quotes has been

detected in a data string which starts with a quote.

User Response: A data string which is enclosed in

quotes must contain an even number of quotes. Add

the necessary quote.

DEFCOM-019 12 -TEXT- :SUBLISTED STRING IS

TOO LONG

Explanation: The data string exceeds maximum

allowable string size.

User Response: Limit your sublisted string to the

allowable size. The maximum string size is set at

PEngiCCL installation time. The default size is 256

characters.

DEFCOM-008 12 • DEFCOM-019 12

Chapter 14. Messages 297

DEFCOM-020 12 -TEXT- :ILLEGAL CHARACTERS

IN MACRO LABEL

Explanation: The macro label (paragraph name)

contains illegal characters.

User Response: The macro label (paragraph name)

can contain alphanumeric characters A-I, J-R, S-Z, 0-9,

“#”, “.”, and “-”. You may be further limited to the

characters allowed for the language in use. Delete

illegal characters.

DEFCOM-021 12 MACNAME :INSUFFICIENT

VIRTUAL STORAGE, CANNOT

CONTINUE

Explanation: PEngiCCL preprocessor ran out of

virtual storage.

User Response: On MVS/XA systems increase the

REGION size on the EXEC statement. On VM/CMS

systems increase the virtual storage of your CMS

machine.

DEFCOM-022 12 VARNAME :RECURSIVE USE OF

KEYWORD PARAMETER

Explanation: The VARNAME keyword has been

coded more than one time for a single macro

invocation.

User Response: Remove the duplicate.

DEFCOM-023 12 VARNAME :UNDEFINED

KEYWORD PARAMETER FOR THIS

MACRO

Explanation: The VARNAME is an undefined or

undeclared keyword parameter, so the keyword is not

supported by the macro.

User Response: You are allowed to use only those

keyword parameters which have been declared in the

macro model. If this is a Migration Utility macro, refer

to the appropriate section in this document for valid

keywords.

DEFCOM-024 12 MACNAME :INSUFFICIENT

VIRTUAL STORAGE, CANNOT

CONTINUE

Explanation: PEngiCCL preprocessor ran out of

virtual storage.

User Response: On MVS/XA systems increase the

REGION size on the EXEC statement. On VM/CMS

systems increase the virtual storage of your CMS

machine.

DEFCOM-025 12 MACNAME :INPUT MACRO

PARAMETERS STRING IS TOO LONG

Explanation: The macro parameters exceed the work

buffer capacity or the macro end delimiter is missing.

The -TEXT- is the data string which caused the

overflow.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters.

DEFCOM-026 12 -TEXT- :ILLEGAL/INVALID FORM

OF EXPRESSION

Explanation: A character following a sublisted string

has been detected that is not a comma, space, or macro

end delimiter.

User Response: Remove the unneeded character(s).

DEFKIK-001 12 :CONDITIONAL INTERPRETER

LOGIC ERROR

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

DEFKIK-002 12 :DIVISION IS IMPROPERLY

DECLARED

Explanation: One of the COBOL division declarations

is not followed by the word ″DIVISION″. That is, the

Division declarative is either incomplete or misspelled.

User Response: Correct the statement in error.

DEFKIK-003 12 :CONTROL SECTION IS

IMPROPERLY DECLARED

Explanation: One of the COBOL section declaratives is

not followed by the word ″SECTION″. That is, the

Section declaration is either incomplete or misspelled.

User Response: Correct the statement in error.

DEFKIK-004 12 :DECLARATION OF

DIVISION/SECTION IS INCOMPLETE

Explanation: One of the COBOL section or division

declaratives is followed by all spaces.

User Response: Correct the statement in error.

DEFKIK-005 12 -TEXT- :VERB/STATEMENT

DISALLOWED DUE TO KICKS

OPTION

Explanation: The displayed COBOL

VERB/STATEMENT is disallowed because of

DEFCOM-020 12 • DEFKIK-005 12

298 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

KICKS=YES in the COPTION PEngiCCL preprocessor

options.

User Response: The KICKS VERBS/STATEMENTS

disallowed are located in the FSKIKTAB table. This

table has been distributed with the

VERBS/STATEMENTS, as per FSKIKTAB description in

this document or it has been customized by your

PEngiCCL software administrator. In either case, if the

KICKS=YES option is selected for PEngiCCL

preprocess, you cannot use any VERBS/STATEMENTS

in your program that exist in the FSKIKTAB.

DEFKIK-006 12 -TEXT- :V.S.M ERROR

ALLOCATING CSECT CB QUEUE

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

DEFLEX-001 12 -TEXT- :UNPAIRED PARENS IN

EXPRESSION

Explanation: The number of left parentheses is not

equal to the number of right parentheses, which are not

a part of a quoted string, in the expression. The -TEXT-

is the tail-end of the last data examined.

User Response: Make sure that you have an even

number of left and right parentheses. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFLEX-002 12 -TEXT- :UNPAIRED LEFT PAREN IN

EXPRESSION

Explanation: The number of left parentheses is not

equal to the number of right parentheses, which are not

a part of a quoted string, in the expression. The -TEXT-

is the tail-end of the last data examined.

User Response: Make sure that you have an even

number of left and right parentheses. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFLEX-003 12 :INTERMEDIATE OUTPUT

EXPRESSION IS TOO LONG

Explanation: The work buffer cannot accommodate

the expression in the decoded format.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters. If the error

occurred on a Migration Utility macro, see note 2 on

page 231.

DEFLEX-004 12 -TEXT- :UNPAIRED RIGHT PAREN

IN EXPRESSION

Explanation: The number of right parentheses is not

equal to the number of left parentheses, which are not

a part of a quoted string, in the expression. The -TEXT-

is the tail-end of the last data examined.

User Response: Make sure that you have an even

number of left and right parentheses. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFLEX-005 12 :INTERMEDIATE INPUT

EXPRESSION IS TOO LONG

Explanation: The work buffer cannot accommodate

the requirements of the conditional expression.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFLEX-006 12 -TEXT- :VARIABLE NAME IS TOO

LONG

Explanation: The variable name in attribute T’

expression is missing or it is too long.

User Response: Code a variable name following the

attribute T’. If the error occurred on a Migration Utility

macro, contact Migration Utility software support

center.

DEFLEX-007 12 -TEXT- :ILLEGAL FORM OF

ATTRIBUTE T EXPRESSION

Explanation: The variable name in attribute T’

expression does not begin with a “&” or it begins with

a “&&”.

User Response: Code a variable name properly

following the attribute T’. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

DEFLEX-008 12 -TEXT- :UNPAIRED QUOTES IN

QUOTED STRING

Explanation: The string contains an uneven number of

quotes. A quoted string must contain an even number

of quotes. Double quotes inside a quoted string can be

coded for quotes which need to be a part of the data

string.

User Response: Code expression according to the

PEngiCCL coding rules. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

DEFKIK-006 12 • DEFLEX-008 12

Chapter 14. Messages 299

DEFLEX-009 12 -TEXT- :INCONSISTENT

EXPRESSION, LOGIC/REL TERM

EXPECTED

Explanation: A data item or a bracketed expression is

not followed by a logical or relational operator.

User Response: Make sure that your conditional

expression complies with PEngiCCL conditional

expression coding rules. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

DEFLEX-010 12 -TEXT- :ILLEGAL AMP SIGN IN

QUOTED EXPRESSION

Explanation: A single “&” has been detected at the

end of a quoted data string.

User Response: A single “&” indicates the beginning

of a variable. Code the variable name as needed. If the

error occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFLEX-011 12 :EXPRESSION EXCEEDS

MAXIMUM OF 64 NESTS

Explanation: The maximum number of bracketed

expressions supported by PEngiCCL has been

exceeded.

User Response: Your are limited to the maximum of

64 bracketed expressions in a single conditional request.

Limit the number of bracketed expressions to the

maximum of 64. If the error occurred on a Migration

Utility macro, contact Migration Utility software

support center.

DEFLEX-012 12 -TEXT- :ILLEGAL FORM OF

EXPRESSION,)(IS ILLEGAL

Explanation: A left and a right parenthesis have been

coded back-to-back outside a quoted string.

User Response: Insert the appropriate logical or

relational operator between the parentheses. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFLEX-014 12 -TEXT- :ILLEGAL FORM OF

EXPRESSION, LOGIC/REL TERM

EXPECTED

Explanation: A data item or a bracketed expression is

not followed by a logical or relational operator.

User Response: Make sure that your conditional

expression complies with PEngiCCL conditional

expression coding rules. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

DEFLEX-015 12 -TEXT- :ILLEGAL FORM OF

EXPRESSION, LOGICAL TERM

EXPECTED

Explanation: A data item or a bracketed expression is

not followed by a logical or relational operator.

User Response: Make sure that your conditional

expression complies with PEngiCCL conditional

expression coding rules. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

DEFLEX-016 12 -TEXT- :ILLEGAL FORM OF

EXPRESSION, AND / OR EXPECTED

Explanation: A data item or a bracketed expression is

not followed by a logical operator.

User Response: Make sure that your conditional

expression complies with PEngiCCL conditional

expression coding rules. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

DEFLEX-017 12 -TEXT- :ILLEGAL FORM OF

EXPRESSION,)(IS ILLEGAL

Explanation: A left and a right parenthesis have been

coded back-to-back outside a quoted string.

User Response: Insert the appropriate logical or

relational operator between the parentheses. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFLEX-019 12 -TEXT- :ILLEGAL FORM OF

EXPRESSION, RELATION EXPECTED

Explanation: A logical or relational operator was

followed by a right parenthesis “)”.

User Response: Correct the expression in error. If the

error occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFLEX-021 12 -TEXT- :ILLEGAL FORM OF

EXPRESSION, LOGICAL TERM

EXPECTED

Explanation: A data item or a bracketed expression is

not followed by a logical or relational operator.

User Response: Correct the expression in error. If the

error occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFLEX-022 12 -TEXT- :ILLEGAL FORM OF

EXPRESSION, AND / OR EXPECTED

Explanation: A data item or a bracketed expression is

not followed by a logical operator.

DEFLEX-009 12 • DEFLEX-022 12

300 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

User Response: Make sure that your conditional

expression complies with PEngiCCL conditional

expression coding rules. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

DEFLEX-023 12 -TEXT- :ALPHANUMERIC

EXPRESSION EXCEEDS 256

CHARACTERS

Explanation: A single quoted/data string in

conditional expression exceeds 256 characters.

User Response: Reduce the string size to below 256. If

the error occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFLEX-024 12 -TEXT- :ILLEGAL FORM OF

LOGICAL EXPRESSION

Explanation: The expression is invalid as written. The

-TEXT- is the tail-end of the expression in error.

User Response: Correct the expression in error. If the

error occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFLEX-025 12 -TEXT- :ARITHMETIC EXPRESSION

EXCEEDS 256 CHARACTERS

Explanation: A single arithmetic expression, in the

conditional expression, exceeds 256 characters.

User Response: Reduce the expression size to below

256. If the error occurred on a Migration Utility macro,

contact Migration Utility software support center.

DEFLEX-026 12 -TEXT- :ILLEGAL EXPRESSION,

ALPHA TERM IS UNEXPECTED

Explanation: A quoted data string has been coded

following a relational or logical operator that was

preceded by a numeric term or expression.

User Response: Make sure that the data type in the

relation or expression is of the same type, that is, all

numeric or all alphanumeric, but not a mixture of both.

If the error occurred on a Migration Utility macro,

contact Migration Utility software support center.

DEFLEX-027 12 -TEXT- :ILLEGAL EXPRESSION,

NUMERIC TERM IS UNEXPECTED

Explanation: A numeric term/expression has been

coded following a relational or logical operator that

was preceded by an alphanumeric string.

User Response: Make sure that the data type in the

relation or expression is of the same type, that is, all

numeric or all alphanumeric, but not a mixture of both.

If the error occurred on a Migration Utility macro,

contact Migration Utility software support center.

DEFLEX-028 12 -TEXT- :ILLEGAL EXPRESSION,

THE NOT IS UNEXPECTED

Explanation: The logical operator ″NOT″ is illegal as

written or out of sequence. The logical ″NOT″ can be

used before a Boolean or a logical expression and in

conjunction with the logical operators: AND OR, AND

NOT, OR NOT.

User Response: Correct the expression in error. If the

error occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFLEX-029 12 -TEXT- :ILLEGAL EXPRESSION,

RELATIONAL TERM IS UNEXPECTED

Explanation: The relational operator is illegal as

written or out of sequence. A relational operator must

be preceded and followed by a data string or an

arithmetic expression.

User Response: Correct the expression in error. If the

error occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFLEX-030 12 -TEXT- :ILLEGAL EXPRESSION,

LOGICAL TERM IS UNEXPECTED

Explanation: The logical operator is illegal as written

or out of sequence. A logical operator must be preceded

and followed by a Boolean or a relational expression.

User Response: Correct the expression in error. If the

error occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFLEX-031 12 -TEXT- :ILLEGAL EXPRESSION,

NUMERIC TERM IS UNEXPECTED

Explanation: A numeric term/expression has been

coded following a relational or logical operator that

was preceded by an alphanumeric string.

User Response: Make sure that the data type in the

relation or expression is of the same type, that is, all

numeric or all alphanumeric, but not a mixture of both.

If the error occurred on a Migration Utility macro,

contact Migration Utility software support center.

DEFLEX-033 12 -TEXT- :NULL EXPRESSION IS NOT

ALLOWED

Explanation: A bracketed expression has been coded

with no data, so it is simply “()”.

User Response: Correct the expression in error. If the

error occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFLEX-023 12 • DEFLEX-033 12

Chapter 14. Messages 301

DEFLEX-034 12 -TEXT- :INCOMPLETE/ILLEGAL

EXPRESSION

Explanation: There are more left than right

parentheses in expression, or expression was

prematurely terminated.

User Response: Correct the expression in error. If the

error occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFLEX-035 12 -TEXT- :ILLEGAL FORM OF

SUBSTRING/CONCATENATION

Explanation: The substring expression is illegal as

written. The -TEXT- is the tail-end of the expression in

error.

User Response: Correct the expression in error. If the

error occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFMAC-001 12 MACNAME :INTERMEDIATE

OUTPUT EXPRESSION IS TOO LONG

Explanation: The work buffer cannot accommodate

the nested macro parameters in the decoded format.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters. If the error

occurred on a Migration Utility macro, see note 2 on

page 231.

DEFMOD-001 12 VARNAME :PROTOTYPE MODEL

VARIABLE SYMBOL IS TOO LONG

Explanation: The variable symbol exceeds 12

characters.

User Response: Reduce the variable symbol to

maximum of 12 characters. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

DEFMOD-002 12 VARNAME :IMPROPER

VARIABLE SYMBOL SPECIFICATION

Explanation: The VARNAME has been coded as a

keyword variable (with “=”), but a keyword variable is

not allowed in the macro label.

User Response: Change the variable to a non-keyword

format (drop the “=”). If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

DEFMOD-003 12 MACNAME :MACRO NAME IS

NOT FOUND IN PROTOTYPE

DEFINITION

Explanation: The prototype model macro name is

missing.

User Response: Add the macro name to the model

statements. If the error occurred on a Migration Utility

macro, contact Migration Utility software support

center.

DEFMOD-004 12 -TEXT- :PROTOTYPE MODEL

MACRO NAME IS TOO LONG

Explanation: The prototype model macro name

exceeds 12 characters.

User Response: Code the correct macro name. Note

that the macro name can be up to 8 characters long on

MVS/XA and VM/CMS operating systems, because of

the PDS and CMS member naming conventions.

However, temporary macro names can be up to 12

characters long. If the error occurred on a Migration

Utility macro, contact Migration Utility software

support center.

DEFMOD-005 12 -TEXT- :PROTOTYPE MODEL

MACRO NAME IS INCONSISTENT

Explanation: The macro name does not equal to the

member name that houses the macro source.

User Response: Make your macro name in the

prototype model equal to the PDS/CMS member name

that houses this macro. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

DEFMOD-006 12 -TEXT- :PROTOTYPE MODEL

VARIABLE SYMBOL IS TOO LONG

Explanation: The variable symbol exceeds 12

characters.

User Response: Reduce the variable symbol to

maximum of 12 characters. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

DEFMOD-007 12 -TEXT- :NO VARIABLE FOUND

IN PROTOTYPE DEFINITION

Explanation: A local or global directive has been

coded without the variable name.

User Response: Add the required variable or remove

the unneeded directive. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

DEFLEX-034 12 • DEFMOD-007 12

302 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

DEFMOD-008 12 -TEXT- :MISSING END QUOTE,

PROTOTYPE MODEL IS INCOMPLETE

Explanation: Unpaired quotes have been detected in

the macro prototype model definition.

User Response: Add quotes as needed. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFMOD-011 12 -TEXT- :INCOMPLETE QUOTED

STRING IN PROTOTYPE DEFINITION

Explanation: Unpaired quotes have been detected in

the macro prototype model definition.

User Response: Add quotes as needed. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFMOD-012 12 -TEXT- :RIGHT PAREN IS

MISSING IN PROTOTYPE

DEFINITION

Explanation: The number of right parentheses doesn’t

equal the number of left parentheses in the expression,

which are not a part of a quoted string. The -TEXT- is

the tail-end of the last data examined.

User Response: Make sure that you have an even

number of left and right parentheses. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFMOD-017 12 -TEXT- :UNPAIRED PARENS IN

PROTOTYPE DEFINITION

Explanation: The number of right parentheses doesn’t

equal the number of left parentheses in the expression,

which are not a part of a quoted string. The -TEXT- is

the tail-end of the last data examined.

User Response: Make sure that you have an even

number of left and right parentheses. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFMOD-019 12 VARNAME :EXCEEDS

VARIABLES BUFFER CAPACITY

Explanation: The acquired buffer during the variable

decoding in PASS1 cannot accommodate the variable

data string. This is probably PEngiCCL preprocessor

error.

User Response: Contact PEngiCCL software support

center.

DEFMOD-020 12 VARNAME :SUBLISTED STRING

IS TOO LONG

Explanation: The data string exceeds maximum

allowable string size.

User Response: Limit your sublisted string to the

allowable size. The maximum string size is set at

PEngiCCL installation time. The default size is 256

characters. If the error occurred on a Migration Utility

macro, see note 2 on page 231.

DEFMOD-021 12 VARNAME :ILLEGAL

PROTOTYPE VARIABLE SYMBOL

Explanation: The variable name contains illegal

characters. The variable name can contain the

alphanumeric characters A-I, J-R, S-Z, 0-9, “#”, “.”, and

“-”.

User Response: Assign a name that contains the

allowed characters only. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

DEFMOD-022 12 VARNAME :ILLEGAL

CHARACTERS IN PROTOTYPE

VARIABLE SYMBOL

Explanation: The variable name contains illegal

characters. The variable name can contain the

alphanumeric characters A-I, J-R, S-Z, 0-9, “#”, “.”, and

“-”.

User Response: Assign a name that contains the

allowed characters only. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

DEFMOD-023 12 VARNAME :ILLEGAL

CHARACTERS IN PROTOTYPE

VARIABLE SYMBOL

Explanation: The variable name contains illegal

characters. The variable name can contain the

alphanumeric characters A-I, J-R, S-Z, 0-9, “#”, “.”, and

“-”.

User Response: Assign a name that contains the

allowed characters only. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

DEFMOD-024 12 -TEXT- :MISSING RIGHT PAREN

IN GBL/LCL SET DEFINITION

Explanation: A right parenthesis is missing in the

dimension of a local or global set symbol.

User Response: Add the necessary right parenthesis.

If the error occurred on a Migration Utility macro,

contact Migration Utility software support center.

DEFMOD-008 12 • DEFMOD-024 12

Chapter 14. Messages 303

DEFMOD-025 12 VARNAME :ILLEGAL USE OF

RESERVED SYSTEM VARIABLE

Explanation: The VARNAME is a reserved PEngiCCL

system variable symbol. System variable symbol cannot

be declared inside a macro prototype or macro set

symbols.

User Response: Use a non-system variable name. If

the error occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFMOD-026 12 -TEXT- :ILLEGAL VALUE IN

SUBLIST DIMENSION

Explanation: A null entry has been coded for the

local/global set symbol dimension.

User Response: Code a numeric dimension. If the

error occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFMOD-027 12 -TEXT- :DIMENSION EXCEEDS 5

DIGITS IN GBL/LCL DEFINITION

Explanation: The dimension of the local/global set

symbol exceeds 5 characters.

User Response: Limit the dimension to 5 characters in

length. If the error occurred on a Migration Utility

macro, contact Migration Utility software support

center.

DEFMOD-028 12 -TEXT- :DIMENSION IS NOT

NUMERIC IN GBL/LCL DEFINITION

Explanation: The dimension value of the local/global

set symbol is not numeric.

User Response: Code a numeric dimension. If the

error occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFMOD-029 12 -TEXT- :ILLEGAL DIMENSION IN

GBL/LCL SET DEFINITION

Explanation: The dimension value of the local/global

set symbol is zero.

User Response: The allowed dimension can be 1 to

32767. Code a valid dimension. If the error occurred on

a Migration Utility macro, contact Migration Utility

software support center.

DEFMOD-030 12 -TEXT- :DIMENSION EXCEEDS

MAXIMUM IN GBL/LCL DEFINITION

Explanation: The dimension value of the local/global

set symbol is greater than 32767.

User Response: The allowed dimension can be 1 to

32767. Code a valid dimension. If the error occurred on

a Migration Utility macro, contact Migration Utility

software support center.

DEFMOD-031 12 -TEXT- :ILLEGAL LCL/GBL

DECLARATIVE

Explanation: The local/global set symbol dimension is

illegal as written.

User Response: Code dimension according to the

PEngiCCL coding standards. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

DEFMOD-032 12 -TEXT- :ILLEGAL OR

UNDECLARED SYMBOL IN SET

DEFINITION

Explanation: The Symbol used in the local/global set

dimension is undefined.

User Response: Code dimension according to the

PEngiCCL coding standards. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

DEFMOD-033 12 VARNAME :DUPLICATE OR

ILLEGAL PROTOTYPE VARIABLE

SYMBOL

Explanation: The VARNAME variable has been

previously declared either in the prototype model or as

a local/global set symbol.

User Response: Delete the duplicate variable

definition. If the error occurred on a Migration Utility

macro, contact Migration Utility software support

center.

DEFMOD-035 12 MACNAME :NO VIRTUAL

STORAGE AVAILABLE

Explanation: PEngiCCL preprocessor ran out of

virtual storage.

User Response: On MVS/XA systems increase the

REGION size on the EXEC statement. On VM/CMS

systems increase the virtual storage of your CMS

machine.

DEFMOD-036 12 VARNAME :INCONSISTENT

GLOBAL VARIABLE DEFINITION

Explanation: The VARNAME global set

symbol/variable is not consistent with the definition of

the same global set symbol/variable defined in another

macro. The items that can cause inconsistency are the

dimension, the set symbol type and the variable-length.

User Response: Identify the differences and code your

variable to comply. If the error occurred on a Migration

Utility macro, contact Migration Utility software

support center.

DEFMOD-025 12 • DEFMOD-036 12

304 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

DEFMOD-037 12 VARNAME :INCONSISTENT

GLOBAL VARIABLE DEFINITION

Explanation: The VARNAME global set

symbol/variable is not consistent with the definition of

the same global set symbol/variable defined in another

macro. The items that can cause inconsistency are the

dimension, the set symbol type and the variable-length.

User Response: Identify the differences and code your

variable to comply. If the error occurred on a Migration

Utility macro, contact Migration Utility software

support center.

DEFMOD-038 12 VARNAME :MAXIMUM NUMBER

OF LOCAL VARIABLES EXCEEDED

Explanation: The maximum number of macro

variables (prototype model and set symbols) that can

be coded for this macro has been exceeded.

User Response: The number of variables is limited as

declared in the macro statement via the VARQ=NN

option, where NN = the number of allowed variables.

The default support for the number of macro local and

global variables is established at PEngiCCL installation

time by the PEngiCCL software administrator.

User Response: Increase the NN value of the

VARQ=NN option on the macro statement to support

additional entries. If the error occurred on a Migration

Utility macro, contact Migration Utility software

support center. Caution: Do not grossly over estimate

the NN value, as it could cause the use of unnecessary

virtual storage.

DEFMOD-039 12 VARNAME :MAXIMUM NUMBER

OF GLOBAL VARIABLES EXCEEDED

Explanation: The maximum number of the global set

symbols/variables has been exceeded.

User Response: The default support for the number of

global variables is established at PEngiCCL installation

time by the PEngiCCL software administrator. If you

are in a need of more variables, have the PEngiCCL

software administrator change the default value. The

value can be changed via the GBLGRP=NN keyword in

the FSCOBNUC program. However, the PEngiCCL

nucleus must be re-linked. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

DEFMOD-040 12 VARNAME :ILLEGAL FORM OF

SUBSCRIPT EXPRESSION

Explanation: An element (slot) length has been coded

for a sublisted local/global SETA or SETB symbol.

User Response: The element size is supported for the

SETC symbols only. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

DEFMOD-041 12 VARNAME :LENGTH

DEFINITION IN SUBSCRIPT IS TOO

SHORT/LONG

Explanation: The length for the VARNAME sublisted

SETC symbol is either zero or it exceeds 15 digits.

User Response: Code a proper numeric length. If the

error occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFMOD-042 12 VARNAME :LENGTH VALUE IN

SUBSCRIPT EXPRESSION IS NOT

NUMERIC

Explanation: The length value for the VARNAME

sublisted SETC symbol is not numeric.

User Response: Code a proper numeric length. If the

error occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFMOD-043 12 VARNAME :LENGTH VALUE IN

SUBSCRIPT EXPRESSION IS ILLEGAL

Explanation: The length for the VARNAME sublisted

SETC symbol is either zero or it exceeds 15 digits.

User Response: Code a proper numeric length. If the

error occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFMOD-044 12 -TEXT- :INVALID/ILLEGAL

PROTOTYPE MODEL EXPRESSION

Explanation: Sublisted prototype model expression is

illegally terminated. That is, the expression is not

followed by a space or comma.

User Response: Remove extraneous data following the

expression or insert a comma or space. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFMOD-045 12 MACNAME :COBOLBAS OR

CICSBASE MACRO IS REQUIRED

Explanation: The COBOLBAS or the CICSBASE macro

was not coded before the macro in error.

DEFMOD-046 12 MACNAME :REQUIRES

CICSBASE MACRO

Explanation: The macro can be used with CICSBASE

macro only.

DEFMOD-047 12 MACNAME :REQUIRES

COBOLBAS MACRO

Explanation: The macro can be used with COBOLBAS

macro only.

DEFMOD-037 12 • DEFMOD-047 12

Chapter 14. Messages 305

DEFOPT-001 04 -TEXT- :UNKNOWN OR

IMPROPER COPTION PARAMETER

Explanation: The -TEXT- is an unsupported/unknown

PEngiCCL option.

User Response: Correct by using one of the allowed

COPTION parameters.

DEFOPT-002 04 -TEXT- :IMPROPER COPTION

PARAMETER VALUE

Explanation: An illegal value or no data has been

coded for one of the COPTION parameters.

User Response: Code a proper value for the keyword

in error.

DEFSQE-001 12 MACNAME :INTERMEDIATE

EXPRESSION IS TOO LONG

Explanation: The work buffer cannot accommodate

the expression in the preprocessed format.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFSQE-002 12 -TEXT- :STRING EXCEEDS 256

CHARACTERS

Explanation: A quoted data string exceeds maximum

allowable string size.

User Response: Limit your quoted data strings to the

allowable size of 256 characters. If the error occurred

on a Migration Utility macro, contact Migration Utility

software support center.

DEFSQE-003 12 -TEXT- :ILLEGAL FORM OF

EXPRESSION

Explanation: The quoted string contains either illegal

attributes or improper concatenation. The -TEXT- is the

tail-end of the string in error.

User Response: Correct the string to comply with

PEngiCCL quoted string coding rules. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFSQE-004 12 -TEXT- :UNPAIRED PARENS IN

SUBSTRING EXPRESSION

Explanation: The number of right parentheses is not

equal to the number of left parentheses in the substring

expression. The -TEXT- is the tail-end of the last data

examined.

User Response: Make sure that you have an even

number of left and right parentheses. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFSQE-005 12 -TEXT- :SUBSTRING EXCEEDS 256

CHARACTERS

Explanation: The substring expression exceeds 256

characters in length.

User Response: Limit your expression to maximum of

256 characters. If the error occurred on a Migration

Utility macro, contact Migration Utility software

support center.

DEFSQE-006 12 -TEXT- :ILLEGAL SUBSTRING

EXPRESSION

Explanation: The subscript expression is illegal as

written.

User Response: Remove the unneeded expression. If

the error occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFSRT-001 12 :VARIABLE TO BE SORTED IS NOT

SUPPLIED

Explanation: The ASORT directive has been coded

with no variable to sort.

User Response: Supply the variable to be sorted. If

the error occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFSRT-002 12 VARNAME :VARIABLE SYMBOL IS

TOO LONG

Explanation: The variable name exceeded 12

characters.

User Response: Limit the variable name to maximum

of 12 characters. If the error occurred on a Migration

Utility macro, contact Migration Utility software

support center.

DEFSRT-003 12 -TEXT- :ILLEGAL SPECIFICATION

OF VARIABLE SYMBOL

Explanation: The variable name to be sorted does not

start with a “&”.

User Response: Prefix variable name with a “&”. If

the error occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFSRT-004 12 VARNAME :UNDEFINED

VARIABLE SYMBOL

Explanation: The VARNAME variable to be sorted is

undefined in this macro.

User Response: Supply a correct variable that has

DEFOPT-001 04 • DEFSRT-004 12

306 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

been defined in this macro. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

DEFSRT-006 12 -TEXT- :ILLEGAL SORT TYPE,

VALID OPTIONS ARE A OR D

Explanation: The sort option is invalid.

User Response: Correct the bad option. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFSRT-007 12 VARNAME :ILLEGAL USE OF

PROTOTYPE MODEL VARIABLE

Explanation: The variable to be sorted is a prototype

model variable. The prototype model variables cannot

be sorted.

User Response: Use the correct variable that has been

defined as a local or global set symbol. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFSRT-008 12 -TEXT- :ILLEGAL SORT SUPPRESS

INDICATOR, MUST BE Y OR N

Explanation: The sort suppress option indicator is

invalid. The suppress indicator can be Y or N only.

User Response: Correct the bad option indicator. If

the error occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFSRT-009 12 VARNAME :ILLEGAL USE OF

NON-DIMENSIONAL VARIABLE

Explanation: An attempt to sort a non-dimensional

variable has been detected.

User Response: Only multi-dimensional variables can

be sorted. Supply a multi-dimensional variable. If the

error occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFSRT-010 12 -TEXT- :ILLEGAL ASORT OPTIONS

Explanation: The ASORT options are illegal as written.

User Response: Correct the bad options. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFSUB-001 12 -TEXT- :UNPAIRED PARENS IN

EXPRESSION

Explanation: The number of right parentheses is not

equal to the number of left parentheses in the

expression. The -TEXT- is the tail-end of the last data

examined.

User Response: Make sure that you have an even

number of left and right parentheses. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFSUB-002 12 -TEXT- :MISSING RIGHT PAREN

IN EXPRESSION

Explanation: The number of right parentheses is not

equal to the number of left parentheses in the

expression. The -TEXT- is the tail-end of the last data

examined.

User Response: Make sure that you have an even

number of left and right parentheses. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFSUB-003 12 :INTERMEDIATE EXPRESSION IS

TOO LONG

Explanation: The work buffer cannot accommodate

the expression in the preprocessed format.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFSUB-004 12 -TEXT- :ILLEGAL FORM OF

EXPRESSION (SUBSCRIPT EXPECTED)

Explanation: The subscript expression is not preceded

by a valid variable symbol.

User Response: Correct the expression. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFSUB-005 12 -TEXT- :INTERMEDIATE

EXPRESSION IS TOO LONG

Explanation: The work buffer cannot accommodate

the expression in the preprocessed format.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFSUB-006 12 :ILLEGAL USE OF SUBSTRING IN

ARITHMETIC EXPRESSION

Explanation: The double subscript (X,Y) was used for

a variable that was not a &SYSLIST variable.

User Response: Correct the expression. The subscript

can be of (X,Y) format only for the &SYSLIST system

variable. If the error occurred on a Migration Utility

DEFSRT-006 12 • DEFSUB-006 12

Chapter 14. Messages 307

macro, contact Migration Utility software support

center.

DEFSUB-007 12 -TEXT- :ILLEGAL FORM OF

EXPRESSION

Explanation: A bracketed expression was coded with

no data inside of it, as “()”. This expression is illegal.

User Response: Correct the expression. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFSUB-008 12 -TEXT- :ILLEGAL

BEGINNING/END OF EXPRESSION

Explanation: An arithmetic operator was followed by

a right parenthesis, or a right parenthesis was not

followed by an arithmetic operator.

User Response: Correct the expression. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFSUB-009 12 :EXPRESSION EXCEEDS

MAXIMUM OF 64 BRACKETED

TERMS

Explanation: The maximum number of bracketed

expressions supported by PEngiCCL was exceeded.

User Response: Your are limited to a maximum of 64

bracketed expressions in a single arithmetical

expression. Limit the number of bracketed expressions

to the maximum of 64. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

DEFTXT-001 12 MACNAME :INTERMEDIATE

EXPRESSION IS TOO LONG

Explanation: The work buffer cannot accommodate

the expression in the preprocessed format.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFTXT-002 12 -TEXT- :STRING EXCEEDS 256

CHARACTERS

Explanation: The data string exceeds 256 characters.

User Response: Limit your data string to maximum of

256 characters. If the error occurred on a Migration

Utility macro, contact Migration Utility software

support center.

GENSUB-001 12 MACNAME :INTERMEDIATE

EXPRESSION IS TOO LONG

Explanation: The work buffer cannot accommodate

the expression in the preprocessed format.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

GENSUB-002 12 VARNAME :ILLEGAL USE OF

SUBSCRIPT FOR THIS VARIABLE

Explanation: The VARNAME variable is not a

sublisted variable.

User Response: The non-sublisted variables cannot be

subscripted. Delete the subscript. If the error occurred

on a Migration Utility macro, contact Migration Utility

software support center.

GENSUB-003 12 VARNAME :UNDEFINED

VARIABLE SYMBOL

Explanation: The VARNAME variable is undefined in

this macro.

User Response: Supply a correct variable that has

been defined in this macro. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

GENSUB-004 12 VARNAME :INTERMEDIATE

EXPRESSION IS TOO LONG

Explanation: The work buffer cannot accommodate

the expression in the preprocessed format.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

GENSUB-005 12 VARNAME :ILLEGAL USE OF T

ATTRIBUTE IN ARITHMETIC

Explanation: The use of T’ attribute has been detected

in arithmetic expression.

User Response: The attribute T’ is an alphanumeric

type. Delete the erroneous attribute. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

DEFSUB-007 12 • GENSUB-005 12

308 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

GENSUB-006 12 VARNAME :ILLEGAL USE OF

SUBSTRING EXPRESSION

Explanation: The subscript expression is illegal as

written or it is not allowed in expression.

User Response: Correct the erroneous expression. If

the error occurred on a Migration Utility macro, contact

Migration Utility software support center.

GENSUB-007 12 VARNAME :SUBLIST IS NOT

ALLOWED

Explanation: The double subscript (X,Y) has been

used for a variable that is not a &SYSLIST variable.

User Response: Correct the expression. The subscript

can be of (X,Y) format only for the &SYSLIST system

variable. If the error occurred on a Migration Utility

macro, contact Migration Utility software support

center.

GENSUB-008 12 VARNAME :ILLEGAL USE OF

SUBSTRING IN ARITHMETIC

Explanation: A substring notation was detected

following an attribute expression.

User Response: Substring usage is not allowed in an

arithmetic expression, as it deals with alphanumeric

data. Correct the erroneous expression. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

GENSUB-009 12 -TEXT- :UNPAIRED PARENS IN

SUBSCRIPT EXPRESSION

Explanation: The number of right parentheses is not

equal to the number of left parentheses in the

expression. The -TEXT- is the tail-end of the last data

examined.

User Response: Make sure that you have an even

number of left and right parentheses. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

GENSUB-010 12 -TEXT- :ILLEGAL VALUE IN

ARITHMETIC EXPRESSION

Explanation: Illegal data has been coded in arithmetic

expression. The -TEXT- is the tail-end of the last data

examined.

User Response: Remove or correct the illegal/invalid

data string. If the error occurred on a Migration Utility

macro, contact Migration Utility software support

center.

GENSUB-011 12 :PREPROCESSOR LOGIC ERROR

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

GENSUB-012 12 VARNAME :THE USE OF

VARIABLE REQUIRES A SUBSCRIPT

Explanation: The VARNAME sublisted variable was

coded without a subscript.

User Response: Code the required subscript. If the

error occurred on a Migration Utility macro, contact

Migration Utility software support center.

GENSUB-013 12 -TEXT- :UNPAIRED QUOTES IN

HEX EXPRESSION

Explanation: Hex expression was not properly coded

in quotes.

User Response: Code quotes around the hex value. If

the error occurred on a Migration Utility macro, contact

Migration Utility software support center.

GENSUB-014 12 -TEXT- :ILLEGAL HEX

EXPRESSION

Explanation: Hex expression was either too long or

too short.

User Response: Adjust the hex value within the limits

of PEngiCCL rules. If the error occurred on a Migration

Utility macro, contact Migration Utility software

support center.

GENSUB-015 12 -TEXT- :ILLEGAL FORM OF

EXPRESSION

Explanation: Hex expression contains illegal (non-hex)

characters.

User Response: Correct the erroneous characters. If

the error occurred on a Migration Utility macro, contact

Migration Utility software support center.

GENTXT-001 12 MACNAME :INTERMEDIATE

EXPRESSION IS TOO LONG

Explanation: The work buffer cannot accommodate

the expression in the preprocessed format.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

GENSUB-006 12 • GENTXT-001 12

Chapter 14. Messages 309

GENTXT-002 12 VARNAME :VARIABLE SYMBOL

IS TOO LONG

Explanation: The variable name exceeded 12

characters.

User Response: Limit the variable name to maximum

of 12 characters. If the error occurred on a Migration

Utility macro, contact Migration Utility software

support center.

GENTXT-003 12 VARNAME :UNDEFINED

VARIABLE SYMBOL

Explanation: The VARNAME variable to be sorted

was undefined to this macro.

User Response: Supply a correct variable that is

defined in this macro. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

GENTXT-004 12 VARNAME :INTERMEDIATE

EXPRESSION IS TOO LONG

Explanation: The work buffer cannot accommodate

the expression in the preprocessed format.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

GENTXT-005 12 VARNAME :SUBLIST/SUBSTRING

EXPRESSION IS ILLEGAL

Explanation: Attribute T’ expression for the

VARNAME variable was followed by a quote and a left

parenthesis, which implies a substring usage.

Substrings are not allowed for attribute expressions.

User Response: Code the expression to comply with

PEngiCCL coding conventions. If the error occurred on

a Migration Utility macro, contact Migration Utility

software support center.

GENTXT-006 12 VARNAME :ATTRIBUTES ARE

NOT ALLOWED

Explanation: Attribute T’ expression for the

VARNAME variable was followed by a quote and a left

parenthesis, which implies a substring usage.

Substrings are not allowed for attribute expressions.

User Response: Code the expression to comply with

PEngiCCL coding conventions. If the error occurred on

a Migration Utility macro, contact Migration Utility

software support center.

GENTXT-007 12 VARNAME :SUBLIST/SUBSTRING

EXPRESSION IS ILLEGAL

Explanation: Attribute K’ expression for the

VARNAME variable was followed by a quote and a left

parenthesis, which implies a substring usage.

Substrings are not allowed for attribute expressions.

User Response: Code the expression to comply with

PEngiCCL coding conventions. If the error occurred on

a Migration Utility macro, contact Migration Utility

software support center.

GENTXT-008 12 VARNAME :SUBLIST EXPRESSION

IS ILLEGAL

Explanation: A subscript was coded for an attribute

N’ expression. The subscripts are allowed in the

attribute N’ expression only for the &SYSLIST variable.

User Response: Code the expression to comply with

PEngiCCL coding conventions. If the error occurred on

a Migration Utility macro, contact Migration Utility

software support center.

GENTXT-009 12 VARNAME :SUBSTRING

EXPRESSION IS ILLEGAL

Explanation: Attribute N’ expression for the

VARNAME variable was followed by a quote and a left

parenthesis, which implies a substring usage.

Substrings are not allowed for attribute expressions.

User Response: Code the expression to comply with

PEngiCCL coding conventions. If the error occurred on

a Migration Utility macro, contact Migration Utility

software support center.

GENTXT-010 12 VARNAME :ILLEGAL USE OF

SUBSCRIPT FOR VARIABLE TYPE

Explanation: The VARNAME variable was not a

sublisted variable.

User Response: The non-sublisted variables cannot be

subscripted. Delete the subscript. If the error occurred

on a Migration Utility macro, contact Migration Utility

software support center.

GENTXT-011 12 -TEXT- :STRING EXCEEDS

MAXIMUM OF 256 CHARACTERS

Explanation: A continuous data string was detected

that was longer than 256 characters.

User Response: Limit the string to maximum of 256

characters. If the error occurred on a Migration Utility

macro, contact Migration Utility software support

center.

GENTXT-002 12 • GENTXT-011 12

310 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

GENTXT-012 12 -TEXT- :INCOMPLETE SUBSCRIPT

EXPRESSION

Explanation: The expression was not properly

enclosed in parentheses or no data was supplied in

subscript.

User Response: Code the expression to comply with

PEngiCCL coding conventions. If the error occurred on

a Migration Utility macro, contact Migration Utility

software support center.

GENTXT-013 12 -TEXT- :UNPAIRED RIGHT PAREN

IN SUBSCRIPT EXPRESSION

Explanation: The number of right parentheses doesn’t

equal the number of left parentheses in the expression.

The -TEXT- is the tail-end of the last data examined.

User Response: Make sure that you have an even

number of left and right parentheses. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

GENTXT-014 12 -TEXT- :SUBSCRIPT EXPRESSION

IS TOO LONG

Explanation: The expression exceeds 256 characters.

The -Text- is the tail-end of the last data examined.

User Response: Limit expression to maximum of 256

characters. If the error occurred on a Migration Utility

macro, contact Migration Utility software support

center.

GENTXT-015 12 -TEXT- :ILLEGAL USE OF

SUBSTRING FOR VARIABLE TYPE

Explanation: The double subscript (X,Y) was used for

a variable that was not a &SYSLIST variable.

User Response: Correct the expression. The subscript

can be of (X,Y) format only for the &SYSLIST system

variable. If the error occurred on a Migration Utility

macro, contact Migration Utility software support

center.

GENTXT-016 12 VARNAME :THE USE OF

VARIABLE REQUIRES A SUBSCRIPT

Explanation: The VARNAME sublisted variable was

coded without a subscript.

User Response: Code the required subscript. If the

error occurred on a Migration Utility macro, contact

Migration Utility software support center.

GENTXT-017 12 -TEXT- :SINGLE QUOTE IS

ILLEGALLY USED IN QUOTED

STRING

Explanation: A single quote was detected in a quoted

string.

User Response: Quotes inside a quoted string must be

coded in pairs, that is, as double quotes. Correct the

erroneous expression. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

GETCOM-001 12 -TEXT- :ILLEGAL VALUE IN

COBOL CC 7

Explanation: The character in position seven was not

a ″*″, ″/″, ″-″ or a space.

User Response: Remove the invalid character.

GETCOM-002 12 :NON BLANK FOUND BEFORE

CONTINUATION COLUMN CC16

Explanation: A non-blank was coded in position 72 of

the previous statement, implying continuation,

however, data was located before continuation column

16 of this statement.

User Response: Continuation starts in position 16 for

Assembler macros and in position 12 for COBOL

macros. Correct the statement in error.

GETCOM-004 12 -TEXT- :OPCODE OR MACRO IS

TOO LONG

Explanation: The macro name exceeded 12 characters.

User Response: Limit macro name to maximum of 12

characters.

GETCOM-005 12 MACNAME :FS-PEngiCCL

MACRO IS ILLEGALLY USED IN

FSCOPY

Explanation: The special PEngiCCL feature of

FSCOPY directive to support CICS macros in COBOL

was activated, but the MACNAME macro was not in

FSUSRTAB macro table.

User Response: The FSUSRTAB contains all macro

names allowed for use with the FSCOPY directive.

Contact your PEngiCCL software administrator for the

valid macros.

GETCPY-001 12 COPYNAME :COPY MEMBER NOT

FOUND IN COPY LIBRARY

Explanation: The COPYNAME member did not exist

in the copy library. This was caused by either an

erroneous COPYNAME or the library which contained

the member was not properly accessed/concatenated.

User Response: Correct the COPYNAME or

concatenate/access the correct library.

GENTXT-012 12 • GETCPY-001 12

Chapter 14. Messages 311

GETCPY-002 12 COPYNAME :ERRORS DETECTED

IN MACRO PROTOTYPE

Explanation: An error has been detected in Easytrieve

Plus macro model.

User Response: Refer to PEngiEZT Reference Manual

for syntax rules.

GETCPY-003 12 SUPPLIED PARAMETERS EXCEED

BUFFER SIZE

Explanation: Easytrieve Plus macro input parameters

exceed the reserved buffer space.

User Response: The buffer space is allocated based on

input macro prototype. Verify input parameters for

proper values and/or size.

GETCPY-004 12 KEYWORD :UNDEFINED

KEYWORD

Explanation: Easytrieve Plus macro input keyword is

not defined in macro model.

User Response: Verify input parameters for proper

keywords.

GETCPY-005 12 KEYWORD :DUPLICATE USER

KEYWORD

Explanation: There is a duplicate keyword in the

supplied Easytrieve Plus macro parameters.

User Response: Remove the duplicate keyword.

GETCPY-006 12 -TEXT- :EXTRANEOUS USER

PARAMETERS

Explanation: Too many parameters has been supplied

for Easytrieve Plus macro.

User Response: Remove the extraneous parameters.

GETMAC-001 12 MACNAME :INVALID OP CODE

OR MACRO NOT FOUND IN

LIBRARY

Explanation: The MACNAME member did not exist

in the macro library. This was caused by either an

erroneous MACNAME or the library which contained

the member was not properly accessed/concatenated.

User Response: Correct the MACNAME or

concatenate/access the correct library.

GETMAC-002 12 MACNAME :INVALID OP CODE

OR MACRO WAS FOUND IN ERROR

Explanation: The MACNAME member did not exist

in the macro library or the macro was previously found

in error. This could be caused by either an erroneous

MACNAME or the library which contained the

member was not properly accessed/concatenated.

User Response: Correct the MACNAME or

concatenate/access the correct library.

GETPGM-001 12 PROGRAM :PREMATURE END

OF INPUT OR MEND IS MISSING

Explanation: A premature end of input program

source was detected. This could be caused by an

improperly coded MEND directive in one of the

temporary macros included before the program, or the

program was not located in the FJSYSIN library.

User Response: Correct the erroneous temporary

macro, or supply the proper program name on the

FJSYSIN if on MVS/XA, or CMS member name and

type if on VM/CMS.

GETPGM-002 12 -TEXT- :IMPROPER

DECLARATION OF MACRO LABEL IN

PROTOTYPE

Explanation: The prototype model macro label

variable did not start with a “&” in the temporary

macro definition. This error can happen only if you

code temporary macros before your program.

User Response: Add a “&” to the macro label.

GETPGM-003 12 -TEXT- :EXPECTING A MACRO

NAME, NONE FOUND

Explanation: The macro name was expected in the

prototype model in the first 32 positions of the first

model statement, or in the first 32 positions after the

macro label, if the label was coded. This error can

happen only if you code temporary macros before your

program.

User Response: Make sure that the macro name starts

within the first 32 positions of the first macro model

statement.

GETPGM-004 12 -TEXT- :MACRO NAME EXCEEDS

MAXIMUM LENGTH

Explanation: The macro name exceeded 12 characters.

This error can happen only if you code temporary

macros before your program.

User Response: Limit the macro name to maximum of

12 characters.

GETPGM-005 12 MACNAME :FSVSMADD CALL,

NO VIRTUAL STORAGE AVAILABLE

Explanation: PEngiCCL preprocessor ran out of

virtual storage.

User Response: On MVS/XA systems increase the

REGION size on the EXEC statement, on VM/CMS

GETCPY-002 12 • GETPGM-005 12

312 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

systems increase the virtual storage of your CMS

machine.

GETPGM-006 12 MACNAME :FSVSMDSA CALL,

NO VIRTUAL STORAGE AVAILABLE

Explanation: PEngiCCL preprocessor ran out of

virtual storage.

User Response: On MVS/XA systems increase the

REGION size on the EXEC statement, on VM/CMS

systems increase the virtual storage of your CMS

machine.

GETPGM-007 12 MACNAME :FSVSMDSA CALL,

NO VIRTUAL STORAGE AVAILABLE

Explanation: PEngiCCL preprocessor ran out of

virtual storage.

User Response: On MVS/XA systems increase the

REGION size on the EXEC statement, on VM/CMS

systems increase the virtual storage of your CMS

machine.

GETPGM-008 12 MACNAME :PREMATURE END

OF INPUT OR MEND IS MISSING

Explanation: A premature end of input program

source was. This could be caused by an improperly

coded MEND directive in one of the temporary macros

included before the program, or the program was not

located in the FJSYSIN library.

User Response: Correct the erroneous temporary

macro or supply the proper program name on the

FJSYSIN if on MVS/XA, or CMS member name ad type

if on VM/CMS.

GETPGM-009 12 MACNAME :FSVSMDSA CALL,

NO VIRTUAL STORAGE AVAILABLE

Explanation: PEngiCCL preprocessor ran out of

virtual storage.

User Response: On MVS/XA systems increase the

REGION size on the EXEC statement. On VM/CMS

systems increase the virtual storage of your CMS

machine.

GETPGM-010 12 VARNAME :PROTOTYPE MODEL

VARIABLE SYMBOL IS TOO LONG

Explanation: The macro label (variable symbol)

exceeded 12 characters. This error can happen only if

you code temporary macros before your program.

Solution. Limit the label symbol to the maximum of 12

characters.

GETSYS-001 12 MACNAME :V.S.M FAILED ON

LOADING SYSTEM VARIABLES

Explanation: PEngiCCL preprocessor ran out of

virtual storage.

User Response: On MVS/XA systems increase the

REGION size on the EXEC statement. On VM/CMS

systems increase the virtual storage of your CMS

machine.

GETSYS-002 12 MACNAME :SYSPARM DATA

LENGTH EXCEEDS 54 BYTES

Explanation: The COPTION parameters coded in the

SYSPARM of MVS/XA JCL exceeded 54 characters.

User Response: The MVS/XA SYSPARM can contain

maximum of 54 characters. Reduce the COPTION

parameters to the maximum of 54 bytes.

GSECT0-001 12 GSECT :CONTROL SECTION

NAME EXCEEDS MAXIMUM LENGTH

Explanation: The GSECT expression exceeded 12

characters after all string substitutions have been made.

User Response: Limit the string to maximum of 12

characters. If the error occurred on a Migration Utility

macro, contact Migration Utility software support

center.

GSECT0-002 12 GSECT :CONTROL SECTION

NAME IS ILLEGAL AS WRITTEN

Explanation: The GSECT expression was less than 2

characters after all string substitutions were made.

User Response: Limit the string to minimum of 2 and

a maximum of 12 characters. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

GSECT0-003 12 GSECT :UNKNOWN CONTROL

SECTION

Explanation: The GSECT generating section was

unknown to PEngiCCL.

User Response: Code a proper GSECT identification.

If the error occurred on a Migration Utility macro,

contact Migration Utility software support center.

GSECT0-004 12 -TEXT- :CONTROL SECTION

NAME NOT ENCLOSED IN PARENS

Explanation: The GSECT name was not properly

enclosed in parentheses.

User Response: Enclose the name in parentheses. If

the error occurred on a Migration Utility macro, contact

Migration Utility software support center.

GETPGM-006 12 • GSECT0-004 12

Chapter 14. Messages 313

GSECT0-005 12 -TEXT- :ILLEGAL CHARACTERS IN

CONTROL SECTION NAME

Explanation: The GSECT name contains illegal

characters.

User Response: The allowed characters are: #, A-I, J-R,

S-Z and 0-9. Change the GSECT name to contain

proper characters. If the error occurred on a Migration

Utility macro, contact Migration Utility software

support center.

GSECT0-006 12 GSECT :ILLEGAL

GSECT,LANG=ASM ALLOWS GP

GSECT ONLY

Explanation: An illegal GSECT for LANG=ASM

PEngiCCL preprocessor option was detected.

User Response: Only General purpose (GP) GSECT

can be used when preprocessing assembler programs. If

the error occurred on a Migration Utility macro, contact

Migration Utility software support center.

IOR000-001 12 :ILLEGAL VALUE IN COBOL

SEQUENCE (CC 0-5)

Explanation: Non-numeric characters was detected in

position 1-6. This error appears only when

COBLSEQ=YES COPTION is in effect.

User Response: Remove erroneous sequence number.

IOR003-001 12 PREMATURE END OF FUNCTION

Explanation: End of input source has been detected

while decoding function. This can occur when input

parameters contain unpaired quotes or parentheses.

User Response: Correct the problem.

IOR003-002 12 XXXXX UNPAIRED PARENS IN

EXPRESSION

Explanation: Data has been detected in cc 8 - 12

before a paired parenthesis could be reached.

User Response: Correct the problem.

IOR003-003 12 XXXXX EXPRESSION IS TOO LONG

Explanation: Function, with its parameters, exceeds

the buffer size specified by the BUFSIZE=nnn in

COPTION. Also, this can occur when input parameters

contain unpaired quotes or parentheses.

User Response: Correct the problem.

IOR003-004 12 XXXXX PARAMETER LIST IS

MISSING

Explanation: Function is not followed by a parameter

list enclosed in parentheses. The error can also occur

when there are more right parentheses “(” than left

parentheses “)” in the parameter list.

User Response: Correct the problem. Note that if you

do not have any function parameters, you must code

an empty list, that is ().

IOR003-005 12 CCL1 LOGIC ERROR

Explanation: A serious error has occurred during

function decoding.

User Response: Contact Support Center.

IOR003-006 12 XXXXX FUN/OBJECT UNDEFINED

OR TOO LONG

Explanation: Function is undefined or the function

name is too long.

User Response: For function naming conventions refer

to VSMF00-08 message, otherwise, functions must be

declared in order to use them.

IOR003-007 12 XXXXX OVERLY FRAGMENTED

FUNCTION

Explanation: The function design cannot be handled

by Migration Utility preprocessor. This can happen

when a function contains too many embedded

functions, causing the management of the generated

code impossible.

User Response: Simplify function design.

IOR003-008 12 XXXXX IMPROPER USE OF

FUNCTION

Explanation: The use of function is improper as

coded.

User Response: Refer to PEngiCCL Reference Manual

for function usage. In general, if a function is used with

a COBOL instruction, then it must be coded with a

leading “%”.

 For example, this statement is syntactically incorrect:

IF SEL_OBJECT (OBJECT OPTION) = ZERO

It should be coded with “%” as:

IF %SEL_OBJECT (OBJECT OPTION) = ZERO

IOR003-009 12 XXXXX INCONSISTENT NUMBER

OF PARAMETERS

Explanation: The number of coded function

parameters does not match to the number declared in

the function model.

GSECT0-005 12 • IOR003-009 12

314 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

User Response: Correct the problem.

IOR003-010 12 MAXIMUM OF 999 FUNCTIONS

EXCEEDED

Explanation: The number of selector functions in the

program exceeds 999.

User Response: None. The only recourse is to split

your program into multiple modules or use fewer

selector functions.

IOR003-011 12 XXXXX NON-BLANK BEFORE

COLUMN 12

Explanation: A non-blank was detected in cc 8 - 12

during function decoding. This can occur when input

parameters contain unpaired quotes or parentheses.

User Response: Correct the problem. Also see note 3

on page 231.

IOR003-012 12 XXXXX INVALID OR MISSING

OBJECT NAME

Explanation: Non-inline function has a null first

parameter, or the first parameter is a quoted string or

not a valid COBOL field name.

User Response: Correct the problem.

IOR003-013 12 XXXXX INLINE FUNCTION LOGIC

ERROR

Explanation: Inline function did not generate any

statements.

User Response: This is function designer error.

Function must be corrected to generate at least one

COBOL line (even if it is a blank or comment.

IOR003-014 12 XXXXX INLINE FUNCTION AREA

″A″ NON-BLANK

Explanation: A non-blank was detected in cc 8 - 12 in

the code generated by the inline function.

User Response: This is function designer error.

Function must be corrected to generate inline

statements starting in cc 12 and after.

MEXIT0-001 12 MACNAME :ERROR FREEING

MACRO POINTERS

Explanation: An error occurred, which freed macro

working set virtual storage pointers. This is Probably

PEngiCCL preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

MNOTE0-001 12 -TEXT- :ILLEGAL EXPRESSION

FORMAT

Explanation: The MNOTE condition code and text are

illegal as coded. The -TEXT- is the last data analyzed.

User Response: Code the mnote according to the

PEngiCCL MNOTE directive coding rules. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

MNOTE0-002 12 -TEXT- :ILLEGAL EXPRESSION,

CC AND TEXT REQUIRED

Explanation: The MNOTE condition code and text are

illegal as coded. The -TEXT- is the last data analyzed.

User Response: Code the MNOTE according to the

PEngiCCL MNOTE directive coding rules. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

MNOTE0-003 12 -TEXT- :CONDITION CODE

LENGTH ERROR

Explanation: The condition code was more than 10

characters long.

User Response: Limit condition code to a maximum

of 10 characters. If the error occurred on a Migration

Utility macro, contact Migration Utility software

support center.

MNOTE0-004 12 -TEXT- :CONDITION CODE IS

NOT NUMERIC

Explanation: The condition code was not numeric.

User Response: Code a numeric value for condition

code from 0 through 999. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

MNOTE0-005 12 -TEXT- :CONDITION CODE

EXCEEDS 999

Explanation: The condition code exceeded maximum

of 999.

User Response: Reduce condition code to maximum

of 999. If the error occurred on a Migration Utility

macro, contact Migration Utility software support

center.

MNOTE0-007 12 -TEXT- :SYNTAX ERROR, ILLEGAL

TEXT FORMAT

Explanation: A null or illegal text was coded for the

MNOTE message.

User Response: Correct the necessary message text. If

the error occurred on a Migration Utility macro, contact

Migration Utility software support center.

IOR003-010 12 • MNOTE0-007 12

Chapter 14. Messages 315

MNOTE0-008 12 -TEXT- :SYNTAX ERROR, TEXT

MUST BE IN QUOTES

Explanation: The MNOTE message was not enclosed

in quotes.

User Response: Enclose the message text in quotes. If

the error occurred on a Migration Utility macro, contact

Migration Utility software support center.

MNOTE0-009 12 -TEXT- :SYNTAX ERROR, END

QUOTE IS MISSING

Explanation: The MNOTE message was not

terminated with a quote.

User Response: Enclose the message in quotes. If the

error occurred on a Migration Utility macro, contact

Migration Utility software support center.

MNOTE0-010 12 -TEXT- :SYNTAX ERROR,

IMPROPER ERROR NUMBER

Explanation: The MNOTE message is improper as

coded.

User Response: Refer to PEngiCCL Reference manual

for proper MNOTE syntax. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

PREGEN-001 12 VARNAME :VARIABLE SYMBOL

IS TOO LONG

Explanation: The variable name exceeded 12

characters.

User Response: Limit the variable name to a

maximum of 12 characters. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

PREGEN-002 12 -TEXT- :SUBSCRIPT EXPRESSION

EXCEEDS 256 CHARACTERS

Explanation: The subscript expression exceeded 256

characters. The -text- is the tail-end of the last data

examined.

User Response: Limit expression to a maximum of

256 characters. If the error occurred on a Migration

Utility macro, contact Migration Utility software

support center.

PREGEN-003 12 LABEL :INTERNAL MACRO

REFERENCE LABEL IS TOO LONG

Explanation: The internal macro reference label was

too long.

User Response: Limit the reference label symbol to a

maximum of 12 characters. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

PREGEN-004 12 LABEL :INVALID INTERNAL

MACRO REFERENCE LABEL

Explanation: An internal macro reference label was

coded without a directive. A directive could not be

located in the first 32 bytes following the internal label.

User Response: An internal macro reference label

must be followed by a valid assembler instruction or a

PEngiCCL directive. Furthermore, the

instruction/directive must be located within the first 32

bytes following the internal reference label. Correct

erroneous statement. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

PREGEN-005 12 LABEL :INTERNAL MACRO

REFERENCE REQUIRES A DIRECTIVE

Explanation: The directive following the internal

macro reference label was too long or invalid as

written.

User Response: Code the proper directive or

assembler instruction following the internal reference

label. If the error occurred on a Migration Utility

macro, contact Migration Utility software support

center.

PREGEN-006 12 -TEXT- :SET DIRECTIVE IS NOT

PRECEDED BY A VARIABLE

Explanation: A PEngiCCL set directive was coded, but

it was not preceded by a target variable symbol starting

in position 1.

User Response: Provide a target variable for the SET

directive. If the error occurred on a Migration Utility

macro, contact Migration Utility software support

center.

PREGEN-007 12 LABEL :ILLEGAL INTERNAL

MACRO REFERENCE LABEL

Explanation: The internal reference label was illegal as

written.

User Response: Code the internal reference label

according to PEngiCCL conventions. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

PREGEN-009 12 :ERROR, MACRO STATEMENT IS

MISSING

Explanation: The ″MACRO″ statement was missing. A

non-comment statement was encountered while

searching for the MACRO statement.

User Response: All PEngiCCL macros must contain a

MNOTE0-008 12 • PREGEN-009 12

316 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

MACRO statement before the prototype model

statements. Add a ″MACRO″ statement to the macro. If

the error occurred on a Migration Utility macro, contact

Migration Utility software support center.

PREGEN-010 12 -TEXT- :PREPROCESSOR

PROGRAM WAS IMPROPERLY

INSTALLED

Explanation: PEngiCCL was improperly installed. A

program used by the displayed DIRECTIVE was not

properly resolved by the link edit program.

User Response: Contact your PEngiCCL software

administrator.

PREGEN-011 12 -TEXT- :ILLEGAL FORM OF

EXPRESSION FOR DIRECTIVE

Explanation: The variable coded starting in position 1

of the statement is not supported for this directive.

That is, the directive does not support coding

conventions of this type.

User Response: Remove the variable or correct the

erroneous statement as needed. If the error occurred on

a Migration Utility macro, contact Migration Utility

software support center.

PREGEN-012 04 MACNAME :MEND STATEMENT

IS MISSING, ASSUMED PRESENT

Explanation: The ″MEND″ statement is missing. The

end of macro input statements was reached but no

″MEND″ statement was located.

User Response: All PEngiCCL macros must contain an

MEND statement at the end of macro source. Add an

MEND statement as required. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

PREGEN-013 12 :MACRO PROTOTYPE MODEL

DEFINITION IS MISSING

Explanation: All statements following the ″MACRO″

statement are either comments or spaces, or no

statements exist following the ″MACRO″ statement.

User Response: A PEngiCCL macro requires at least a

MACRO, Prototype model and an MEND statement.

Change your macro to comply with the PEngiCCL

conventions. If the error occurred on a Migration

Utility macro, contact Migration Utility software

support center.

PREGEN-014 12 :V.S.M ERROR OR INSUFFICIENT

VIRTUAL STORAGE

Explanation: PEngiCCL preprocessor ran out of

virtual storage.

User Response: On MVS/XA systems increase the

REGION size on the EXEC statement. On VM/CMS

systems increase the virtual storage of your CMS

machine.

PREGEN-016 12 LABEL :INTERNAL REFERENCE

LABEL IS ILLEGAL AS SPECIFIED

Explanation: The internal macro reference label is too

short.

User Response: The internal reference label must start

with a period (.) and contain 1 to 12 characters. If the

error occurred on a Migration Utility macro, contact

Migration Utility software support center.

PREGEN-017 12 LABEL :DUPLICATE INTERNAL

REFERENCE LABEL

Explanation: The internal reference label has been

previously declared.

User Response: Choose a unique name to avoid

duplicates. If the error occurred on a Migration Utility

macro, contact Migration Utility software support

center.

PREGEN-018 12 LABEL :MAXIMUM NUMBER OF

REFERENCE LABELS EXCEEDED

Explanation: The number of internal reference labels

exceeds the number of allocated slots. This is probably

a PEngiCCL logic error.

User Response: Contact PEngiCCL software support

center.

PREGEN-019 12 :INTERMEDIATE EXPRESSION IS

TOO LONG

Explanation: The work buffer cannot accommodate

the expression in the preprocessed format.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

PREGEN-020 12 :PREPROCESSOR PROGRAM 1 IS

NOT RESOLVED

Explanation: PEngiCCL was improperly installed. A

program used by the displayed DIRECTIVE, in the

statement before this message, was not properly

resolved by the link edit program.

User Response: Contact your PEngiCCL software

administrator.

PREGEN-010 12 • PREGEN-020 12

Chapter 14. Messages 317

PREGEN-021 12 :PREPROCESSOR PROGRAM 2 IS

NOT RESOLVED

Explanation: PEngiCCL was improperly installed. A

program used by the displayed DIRECTIVE, in the

statement before this message, was not properly

resolved by the link edit program.

User Response: Contact your PEngiCCL software

administrator.

PREGEN-022 12 :PREPROCESSOR PROGRAM 3 IS

NOT RESOLVED

Explanation: PEngiCCL was improperly installed. A

program used by the displayed DIRECTIVE, in the

statement before this message, was not properly

resolved by the link edit program.

User Response: Contact your PEngiCCL software

administrator.

PREGEN-023 12 :PREPROCESSOR PROGRAM 4 IS

NOT RESOLVED

Explanation: PEngiCCL was improperly installed. A

program used by the displayed DIRECTIVE, in the

statement before this message, was not properly

resolved by the link edit program.

User Response: Contact your PEngiCCL software

administrator.

PREGEN-024 12 VARNAME :ILLEGAL OR

UNDEFINED VARIABLE SYMBOL

Explanation: The VARNAME variable is undefined in

this macro.

User Response: Supply a correct variable that has

been defined in this macro. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

PREGEN-025 12 VARNAME :ILLEGAL USE OF

PROTOTYPE OR READONLY

VARIABLE

Explanation: A set directive was coded using a

read-only or a prototype model variable as the target.

User Response: The read-only and prototype model

variables cannot be altered. Correct your expression to

use a correct variable. If the error occurred on a

Migration Utility macro, contact Migration Utility

software support center.

PREGEN-026 12 VARNAME :VARIABLE IS

INCONSISTENTLY USED WITH ITS

DECLARATION

Explanation: A SET directive was attempted using the

VARNAME variable as the target; however, the

declared variable type was not consistent with the

attempted set directive. That is, a SETC was attempted

on a SETA or SETB variable type.

User Response: Use the SET directive which is

consistent with the declared variable type. If the error

occurred on a Migration Utility macro, contact

Migration Utility software support center.

PREGEN-027 12 VARNAME :ILLEGAL USE OF

SUBSCRIPT FOR NON-SUBSCRIPTED

VARIABLE

Explanation: A subscript was coded for the

VARNAME non-subscripted variable.

User Response: Correct the erroneous expression. If

the error occurred on a Migration Utility macro, contact

Migration Utility software support center.

PREGEN-028 12 VARNAME :VARIABLE REQUIRES

THE USE OF SUBSCRIPT

Explanation: A subscript was not been coded for the

VARNAME sublisted variable.

User Response: Code a subscript as required. If the

error occurred on a Migration Utility macro, contact

Migration Utility software support center.

PREGEN-029 12 : MEND WAS PROCESSED, THIS

LINE IS ILLEGAL

Explanation: The displayed statement was located in

the macro source after the MEND statement.

User Response: Place your MEND as the last entry of

macro source. If the error occurred on a Migration

Utility macro, contact Migration Utility software

support center.

PREGEN-030 12 -TEXT- :VARQ= OPTION IS

INVALID

Explanation: The NN value in the VARQ=NN was

either not numeric, exceeded 10 digits or it exceeded

1024.

User Response: Correct the erroneous value. If the

error occurred on a Migration Utility macro, contact

Migration Utility software support center.

PREGEN-031 12 -TEXT- :MODE= OPTION IS

INVALID

Explanation: The MODE= options of MACRO

statement are invalid.

User Response: Refer to the PEngiCCL Reference

Manual for the allowed Macro Modes.

PREGEN-021 12 • PREGEN-031 12

318 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

PREGEN-032 12 -TEXT- :UNBALANCED

TERMINATOR, MACRO

STMT=NNNNN

Explanation: ENDAIF or ENDADO is missing.

User Response: Each AIFINL and ADOWHL must be

paired with the respective terminator.

PREGEN-033 12 -TEXT- :NO TERMINATOR,

MACRO STMT=NNNNN

Explanation: ENDAIF or ENDADO is missing.

User Response: Each AIFINL and ADOWHL must be

paired with the respective terminator.

READ00-001 12 VARNAME :VARIABLE IS NOT

DEFINED

Explanation: The displayed Varname is undefined.

User Response: Contact Migration Utility Software

Support Center.

READ00-002 12 -TEXT- :UNPAIRED OR IMPROPER

USE OF QUOTES

Explanation: A data string with no ending quote was

detected on the line displayed before the message.

User Response: Provide the end quote. Also see note

3 on page 231.

READ00-003 12 -TEXT- :RIGHT PAREN IS MISSING

IN BRACKETED STRING

Explanation: Unpaired brackets were detected in the

bracketed expression.

User Response: The displayed -TEXT- shows the

beginning of the bracketed expression. Provide

additional brackets as needed. Note that the bracketed

expressions can span over multiple input lines.

READ00-004 12 -TEXT- :IMPROPER TERMINATION

OF BRACKETED STRING

Explanation: Refer to the READ00-003 message.

READ00-005 12 -TEXT- :DATA ELEMENT IS TOO

LONG

Explanation: The data string is longer than the

maximum allowed by PEngiCCL (typically 256 bytes).

User Response: Reduce the data string in error.

READ00-006 12 -TEXT- :UNPAIRED PAREN OR

EXPRESSION IS TOO LONG

Explanation: The data string enclosed in parentheses

is too long or parentheses are not paired.

User Response: Reduce/correct the data string in

error.

READ00-007 12 VARNAME :VARIABLE BUFFER

LESS THAN MINIMUM REQUIRED

Explanation: The &SYSTOKEN system variable is not

properly defined.

User Response: Contact Migration Utility software

support center.

READ00-008 12 VARNAME :OVER 2046 WORDS IN

INPUT. CANNOT TOKENIZE.

Explanation: The input text contains more than 2046

data elements.

User Response: Reduce the number of data elements

in the input.

READ00-009 12 VARNAME :INPUT STRING

EXCEEDS SYSTOKEN SIZE

Explanation: The data contained in the Variable of

ACCL TOKEN directive exceeds 16,000 bytes.

User Response: Reduce the variable contents to

maximum of 16,000 bytes.

READ00-010 12 MACNAME :FILE IS NOT OPENED

FOR READ

Explanation: An attempt was made to use the ACCL

READ directive before an ACCL OPEN.

User Response: Code an ACCL OPEN directive before

the ACCL READ.

READ00-011 12 -TEXT- :NON-BLANK FOUND

BEFORE CONTINUATION COLUMN

Explanation: Area before continuation column is not

spaces.

User Response: This can occur on improperly coded

bracketed expressions. i.e, an unpaired bracketed

expression on a single line causes the read of the next

statement/record that does not belong to the bracketed

expression. Also see note 3 on page 231.

READ00-012 12 :DATA STRING IS TOO LONG

Explanation: The input bracketed data string exceeds

the BUFSIZE= value in the COPTION statement.

User Response: Increase BUFSIZE=NNNN value (refer

to “Translator CCL1 preprocessor options” on page 183

PREGEN-032 12 • READ00-012 12

Chapter 14. Messages 319

183). Also see note 3 on page 231.

READ00-013 12 :EXPECTED CONTINUATION NOT

FOUND

Explanation: The last Easytrieve Plus line was coded

with a ’+’ or a ’-’ but here is no more input.

User Response: Correct the erroneous statement.

READ00-014 12 VARNAME :UNDECLARED

VARIABLE SYMBOL

Explanation: VARNAME variable was located in

Easytrieve Plus macro but there is no corresponding

declared variable on the MACRO statement.

User Response: Add the VARNAME to the macro

statement.

READ00-015 12 MACNAME :DUPLICATE

TEMPORARY MACRO NAME

Explanation: The macro name already exists (it was

previously processed).

User Response: Make sure that you code unique

macro names. Macros coded at the beginning of an

Easytrieve Plus program must be unique.

READ00-016 12 :MACRO NAME IS MISSING

Explanation: Easytrieve Plus macro statement

″MSTART″ was coded without the macro name.

User Response: Provide a valid macro name following

the MSTART statement.

READ00-017 12 :LENGTH OF MACRO NAME

EXCEEDS 12 CHARACTERS

Explanation: Easytrieve Plus macro name following

the ″MSTART″ is too long.

User Response: Provide a valid 1-12 characters macro

name.

READ00-018 12 : - TEXT -

Explanation: Error managing macro queue (most

probably short on memory).

User Response: This message was probably preceded

by a GETMAIN error. Try to increase REGION size on

your JOB statement. Ignore the text part of this

message.

READ00-019 12 MACNAME :TEMPORARY MACRO

″MEND″ IS MISSING

Explanation: MEND was not located for the

temporary macro.

User Response: Code MEND as required.

READ00-020 12 -TEXT- :IMPROPER TERMINATION

OF STRING

Explanation: Expected space is not found following

the expression.

User Response: Check expression syntax.

REFLAB-001 12 -TEXT- :UNDEFINED INTERNAL

REFERENCE LABEL

Explanation: The displayed macro reference label is

undefined.

User Response: Provide the label inside the macro.

REFLAB-002 12 -TEXT- :INTERNAL REFERENCE

LABEL LENGTH ERROR

Explanation: The reference label exceeds 12 characters.

User Response: Reduce the label size.

REPDIR-001 12 :PREPROCESSOR ERROR,

STX,TXT,SPC IS MISSING

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

REPDIR-007 12 :PREPROCESSOR ERROR,

ETX/SAE/SQE IS MISSING

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

REPDIR-008 12 :INTERMEDIATE BUFFER

CAPACITY EXCEEDED

Explanation: The work buffer cannot accommodate

the expression in the preprocessed format.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters.

REPDIR-009 12 :PREPROCESSOR ERROR,

CHAIN/NUL ERROR

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

READ00-013 12 • REPDIR-009 12

320 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

REPDIR-010 12 VARNAME

:INCONSISTENT/ILLEGAL

SUBSTRING USAGE (N,M)

Explanation: A subscript was coded for an attribute

N’ expression. The subscripts are allowed in the

attribute N’ expression, only for the &SYSLIST variable.

User Response: Code the expression to comply with

PEngiCCL coding conventions. If the error occurred on

a Migration Utility macro, contact Migration Utility

software support center.

REPDIR-011 12 VARNAME :SUBSCRIPT VALUE

EXCEEDS 32,767

Explanation: The computed subscript value exceeds

32,767.

User Response: Make sure that the subscript does not

result in a number greater than 32,767. If the error

occurred on a Migration Utility macro, see note 2 on

page 231.

REPDIR-012 12 VARNAME :SUBSCRIPT EXCEEDS

DECLARED VARIABLE DIMENSION

Explanation: The computed subscript exceeds the

declared variable dimension.

User Response: Make sure that the subscript

expression does not result in a number greater than the

variable dimension. If the error occurred on a

Migration Utility macro, see note 2 on page 231.

REPSQC-001 12 :PREPROCESSOR ERROR,

SQE/SQC IS MISSING

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

REPSQC-002 12 :PREPROCESSOR ERROR, SXE/EXC

IS MISSING

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

REPSQC-003 12 :PREPROCESSOR ERROR, SXE/SXC

IS MISSING

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

REPSQC-004 12 :ILLEGAL SUBSTRING

DISPLACEMENT (MUST BE > 0)

Explanation: The computed displacement X of

substring expression (X,Y) is less than 1 or negative.

User Response: Make sure that the substring

expression results in a substring displacement position

greater than zero. If the error occurred on a Migration

Utility macro, see note 2 on page 231.

REPSQC-005 12 :SUBSTRING DISPLACEMENT

EXCEEDS THE STRING LENGTH

Explanation: The computed displacement X of

substring expression (X,Y) is greater than the string

length.

User Response: Make sure that the substring

expression results in a substring displacement within

the range of the string size. If the error occurred on a

Migration Utility macro, see note 2 on page 231.

REPSQC-007 12 :PREPROCESSOR ERROR,

EQE/SQE IS MISSING

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

REPSQC-008 12 :INTERMEDIATE EXPRESSION IS

TOO LONG

Explanation: The work buffer cannot accommodate

the expression in the preprocessed format.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters.

REPSQC-009 12 :PREPROCESSOR ERROR,

CHAIN/NUL ERROR

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

REPSQC-010 12 VARNAME

:INCONSISTENT/ILLEGAL

SUBSTRING USAGE (N,M)

Explanation: A subscript has been coded for an

attribute N’ expression. The subscripts are allowed in

the attribute N’ expression, only for the &SYSLIST

variable.

User Response: Code the expression to comply with

PEngiCCL coding conventions. If the error occurred on

REPDIR-010 12 • REPSQC-010 12

Chapter 14. Messages 321

a Migration Utility macro, contact Migration Utility

software support center.

REPSQC-011 12 VARNAME :SUBSCRIPT VALUE

EXCEEDS 32,767

Explanation: The computed subscript value exceeds

32,767.

User Response: Make sure that the subscript does not

result in a number greater than 32,767. If the error

occurred on a Migration Utility macro, see note 2 on

page 231.

REPSQC-012 12 VARNAME :SUBSCRIPT EXCEEDS

DECLARED VARIABLE DIMENSION

Explanation: The computed subscript exceeds the

declared variable dimension.

User Response: Make sure that the subscript

expression does not result in a number greater than the

variable dimension. If the error occurred on a

Migration Utility macro, see note 2 on page 231.

SETA00-001 12 :PREPROCESSOR LOGIC ERROR,

HCPSAE IS MISSING

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

SETA00-002 12 :PREPROCESSOR LOGIC ERROR,

HCPEAE IS MISSING

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

SETA00-003 12 :PREPROCESSOR LOGIC ERROR,

BAD SAC..EAC CHAIN

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

SETA00-004 12 :ILLEGAL/INCONSISTENT MATH

OPERATIONS

Explanation: Two high order math operations (* OR /)

were coded in succession. Or a variable between these

operation codes contained a null value.

User Response: Correct the erroneous expression. If

the error occurred on a Migration Utility macro, contact

Migration Utility software support center.

SETA00-005 12 :INCOMPLETE/INCONSISTENT

EXPRESSION

Explanation: The math expression is illegally

terminated with a math operation symbol. This can be

caused by a null value in the last variable within the

expression.

User Response: Correct the erroneous expression. If

the error occurred on a Migration Utility macro, contact

Migration Utility software support center.

SETA00-006 12 :ILLEGAL FORM OF EXPRESSION

Explanation: Two data fields are detected in

succession. This would indicate a problem with

PEngiCCL preprocessor logic.

User Response: Contact PEngiCCL software support

center.

SETA00-007 12 :PREPROCESSOR LOGIC ERROR,

CHAIN/NUL ERROR

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

SETA00-009 12 VARNAME :NON-NUMERIC ENTRY

USED IN ARITHMETIC

Explanation: The VARNAME variable does not

contain numeric data.

User Response: Before you use a SETC symbol in an

arithmetic expression, make sure that the data it

contains is numeric. If the error occurred on a

Migration Utility macro, see note 2 on page 231.

SETA00-010 12 VARNAME :PREPROCESSOR

LOGIC ERROR, ILLEGAL HEX VALUE

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

SETA00-011 12 VARNAME

:INCONSISTENT/ILLEGAL

SUBSTRING USAGE (N,M)

Explanation: A subscript has been coded for an

attribute N’ expression. The subscripts are allowed in

the attribute N’ expression only for the &SYSLIST

variable.

User Response: Code the expression to comply with

PEngiCCL coding conventions. If the error occurred on

a Migration Utility macro, contact Migration Utility

software support center.

REPSQC-011 12 • SETA00-011 12

322 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

SETA00-012 12 VARNAME :PREPROCESSOR

ERROR, SUBSCRIPT/CHAIN/NUL

ERROR

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

SETA00-013 12 VARNAME :SUBSCRIPT VALUE

EXCEEDS 32,767

Explanation: The computed subscript value exceeds

32,767.

User Response: Make sure that the subscript does not

result in a number greater than 32,767. If the error

occurred on a Migration Utility macro, see note 2 on

page 231.

SETA00-014 12 VARNAME :SUBSCRIPT EXCEEDS

DECLARED VARIABLE DIMENSION

Explanation: The computed subscript exceeds the

declared variable dimension.

User Response: Make sure that the subscript

expression does not result in a number greater than the

variable dimension. If the error occurred on a

Migration Utility macro, see note 2 on page 231.

SETA00-015 12 :INTERMEDIATE ARITHMETIC

VALUE EXCEEDS MAXIMUM

Explanation: A numeric overflow resulted while

trying to carry out an arithmetic operation in

expression. Note that in the intermediate operations,

the high order (* or /) operations internal product or

quotient can be up to 15 significant digits, and the low

order (+ or -) operations internal sum or difference can

be up to 31 digits. The final outcome of each individual

expression cannot exceed 2147483647.

User Response: Make sure that the operands in math

operations are not used improperly by validating each

operand before it is used in an arithmetic operation. If

the error occurred on a Migration Utility macro, see

note 2 on page 231.

SETA00-016 12 :DIVISOR IS ZERO, CANNOT

DIVIDE BY ZERO

Explanation: The computed divisor is zero.

User Response: Make sure that the operands in math

operations are not used improperly by validating each

operand before it is used in an arithmetic operation. If

the error occurred on a Migration Utility macro, see

note 2 on page 231.

SETA00-017 12 :MAXIMUM OF 64

TERMS/EXPRESSIONS EXCEEDED

Explanation: The maximum number of bracketed

expressions that can be supported by PEngiCCL has

been exceeded.

User Response: Your are limited to the maximum of

64 bracketed expressions in a single conditional request.

Limit the number of bracketed expressions to the

maximum of 64. If the error occurred on a Migration

Utility macro, contact Migration Utility software

support center.

SETA00-018 12 VARNAME :VARIABLE USED IN

ARITHMETIC HAS A NULL STRING

Explanation: The VARNAME used in arithmetic

expression contains no data.

User Response: Make sure that the operands in math

operations are not used improperly by validating each

operand before it is used in an arithmetic expression. If

the error occurred on a Migration Utility macro, see

note 2 on page 231.

SETA01-001 12 MACNAME :PREPROCESSOR

PROGRAM LOGIC ERROR

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

SETA01-002 12 VARNAME :SUBSCRIPT EXCEEDS

DECLARED VARIABLE DIMENSION

Explanation: The computed subscript exceeds the

declared variable dimension.

User Response: Make sure that the subscript

expression does not result in a number greater than the

variable dimension. If the error occurred on a

Migration Utility macro, see note 2 on page 231.

SETB00-001 12 MACNAME :PREPROCESSOR

PROGRAM LOGIC ERROR

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

SETB00-002 12 VARNAME :SUBSCRIPT EXCEEDS

VARIABLE DIMENSION

Explanation: The computed subscript exceeds the

declared variable dimension.

User Response: Make sure that the subscript

expression does not result in a number greater than the

SETA00-012 12 • SETB00-002 12

Chapter 14. Messages 323

variable dimension. If the error occurred on a

Migration Utility macro, see note 2 on page 231.

SETB00-003 -TEXT- :VALUE IS NOT A BOOLEAN 0

OR 1

Explanation: The SETB value is not a valid Boolean.

User Response: Make sure that you use a valid

Boolean in SETB directive.

SETCPY-001 12 :COPY DIRECTIVE BUT NO

MEMBER SPECIFIED

Explanation: An FSCOPY directive was coded without

a copy member name.

User Response: Specify the member name to be

copied following the FSCOPY directive.

SETCPY-002 12 COPYNAME :IMPROPER

SPECIFICATION OF MEMBER NAME

Explanation: An FSCOPY directive was coded without

a copy member name.

User Response: Specify the member name to be

copied following the FSCOPY directive.

SETCPY-003 12 COPYNAME :COPY MEMBER

NAME IS TOO LONG

Explanation: The FSCOPY member name exceeds 12

characters.

User Response: Code the correct FSCOPY member

name. Note: Because of the PDS and CMS member

naming conventions, the copy name can be up to 8

characters long on MVS/XA and VM/CMS operating

systems.

SETCPY-005 12 -TEXT- :ILLEGAL VALUE IN CC 7

Explanation: The character in position seven is not a

″*″, ″/″, ″-″ or a space.

User Response: Remove the invalid character.

SETCPY-006 12 -TEXT- :EXTRANEOUS DATA IN

COPY STATEMENT

Explanation: The FSCOPY statement contains

extraneous data following the copy member name.

User Response: Remove the unnecessary extraneous

data from the statement.

SETCPY-007 12 -TEXT- :SPECIAL COPY IS ILLEGAL

INSIDE MACRO DEFINITION

Explanation: The special ″FSCOPY member (ASM)″

FSCOPY expression was coded inside a macro.

User Response: The special FSCOPY for CICS macro

support is not allowed inside macros. Remove it.

SETC00-001 12 MACNAME :PREPROCESSOR

PROGRAM LOGIC ERROR

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

SETC00-002 12 VARNAME :SUBSCRIPT EXCEEDS

DECLARED VARIABLE DIMENSION

Explanation: The computed subscript exceeds the

declared variable dimension.

User Response: Make sure that the subscript

expression does not result in a number greater than the

variable dimension. If the error occurred on a

Migration Utility macro, see note 2 on page 231.

SETC00-003 12 VARNAME :DATA STRING

EXCEEDS MAXIMUM VARIABLE SIZE

Explanation: The data string is longer than the

variable size.

User Response: Limit the data string to the variable

size. If the error occurred on a Migration Utility macro,

see note 2 on page 231.

SETW00-001 12 MACNAME :NO DATA IN INPUT

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

SETW00-002 12 MACNAME :INPUT STRING IS

TOO LONG

Explanation: The work buffer cannot accommodate

the input data string. The string in error is displayed

before the message.

User Response: The default work buffer size is

generated at PEngiCCL installation time. Increase the

buffer size by coding the BUFSIZE=NNN in the

PEngiCCL COPTION parameters. See note 3 on page

231.

SETW00-003 12 :INCOMPLETE CONTINUATION

LINE

Explanation: A non-blank character was found in

position 72 of the last statement, but there were no

more statements to input. A non-blank character in

position 72 denotes continuation, therefore,

continuation statements are expected.

User Response: Add the necessary continuation

SETB00-003 • SETW00-003 12

324 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

statements or remove the non-blank character from

position 72. Also see note 3 on page 231.

SETW00-004 12 -TEXT- :NON-BLANK FOUND

BEFORE CONTINUATION COLUMN

Explanation: A non-blank was coded in position 72 of

the previous statement, implying continuation, but data

was located before continuation column 16 of this

statement.

User Response: All continuation lines inside

PEngiCCL macros must start in position 16. Correct the

statement in error. Also see note 3 on page 231.

SETW01-001 12 :REQUIRED STRING NOT IN

QUOTES

Explanation: The data string in the statement

displayed before this message does not start with a

quote.

User Response: Enclose the data string in quotes as

required.

SETW01-003 12 :INPUT STRING IS TOO LONG

Explanation: The work buffer cannot accommodate

the input data string. The string in error is displayed

before the message. Also see note 3 on page 231.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters.

SETW01-004 12 -TEXT- :UNPAIRED QUOTES IN

QUOTED STRING

Explanation: An uneven number of quotes has been

detected in a data string which starts with a quote.

User Response: A data string which is enclosed in

quotes must contain an even number of quotes. Add

the necessary quote. Also see note 3 on page 231.

SETW01-005 12 :UNPAIRED QUOTES, NO

CONTINUATION

Explanation: The end of data string which starts with

a quote was reached before the end quote could be

located.

User Response: A data string which is enclosed in

quotes must contain an even number of quotes. Add

the necessary quote. Also see note 3 on page 231.

SETW01-006 12 :UNPAIRED QUOTES IN QUOTED

STRING

Explanation: An uneven number of quotes has been

detected in a data string which starts with a quote.

User Response: A data string which is enclosed in

quotes must contain an even number of quotes. Add

the necessary quote.

SETW01-007 12 :INPUT STRING IS TOO LONG

Explanation: The work buffer cannot accommodate

the input data string. The string in error is displayed

before the message. Also see note 3 on page 231.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters.

SETW01-008 12 :INPUT STRING IS TOO LONG

Explanation: The work buffer cannot accommodate

the input data string. The string in error is displayed

before the message. Also see note 3 on page 231.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters.

SETW01-009 12 :INCOMPLETE CONTINUATION

LINE

Explanation: A non-blank character was found in

position 72 of the last statement, but there were no

more statements to input. A non-blank character in

position 72 denotes continuation, therefore,

continuation statements are expected.

User Response: Add the necessary continuation

statements or remove the non-blank character from

position 72. Also see note 3 on page 231.

SETW01-010 12 -TEXT- :NON-BLANK FOUND

BEFORE CONTINUATION COLUMN

Explanation: A non-blank was coded in position 72 of

the previous statement, implying continuation, but data

was located before continuation column 16 of this

statement.

User Response: All continuation lines inside

PEngiCCL macros must start in position 16. Correct the

statement in error.

SETW02-001 12 :INPUT STRING IS TOO LONG

Explanation: The work buffer cannot accommodate

the input data string. The string in error is displayed

before the message.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters.

SETW00-004 12 • SETW02-001 12

Chapter 14. Messages 325

SETW02-002 12 -TEXT- :END QUOTE MISSING

Explanation: The end of data string which starts with

a quote was reached before the end quote could be

located.

User Response: A data string which is enclosed in

quotes must contain an even number of quotes. Add

the necessary quote.

SETW02-003 12 :UNPAIRED QUOTES, BUT NO

CONTINUATION

Explanation: The end of data string which starts with

a quote was reached before the end quote could be

located.

User Response: A data string which is enclosed in

quotes must contain an even number of quotes. Add

the necessary quote.

SETW02-004 12 :UNPAIRED QUOTES IN INPUT

STRING

Explanation: An uneven number of quotes has been

detected in a data string which starts with a quote.

User Response: A data string which is enclosed in

quotes must contain an even number of quotes. Add

the necessary quote.

SETW02-005 12 :INPUT STRING IS TOO LONG

SETW02-006 12 :INPUT STRING IS

TOO LONG

Explanation: The work buffer cannot accommodate

the input data string. The string in error is displayed

before the message.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters.

SETW02-007 12 :INCOMPLETE CONTINUATION

LINE

Explanation: A non-blank character was found in

position 72 of the last statement, but there were no

more statements to input. A non-blank character in

position 72 denotes continuation and therefore

continuation statements are expected.

User Response: Add the necessary continuation

statements or remove the non-blank character from

position 72.

SETW02-008 12 -TEXT- :NON BLANK DATA

BEFORE CONTINUATION COLUMN

Explanation: A non-blank was coded in position 72 of

the previous statement, implying continuation, but data

was located before continuation column 16 of this

statement.

User Response: All continuation lines inside

PEngiCCL macros must start in position 16. Correct the

statement in error.

SETW02-009 12 :DIRECTIVE EXPRESSION IS

MISSING

Explanation: A directive was coded without the

necessary expression.

User Response: Code the necessary expression as

required by the directive.

SETW02-011 12 :UNPAIRED PARENS IN INPUT

STRING

Explanation: The number of left parentheses is not

equal to the number of right parentheses in the

expression, which are not a part of a quoted string. The

-TEXT- is the tail-end of the last data examined.

User Response: Make sure that you have an even

number of left and right parentheses. If the error

occurred on a Migration Utility macro, see note 2 on

page 231.

SETW02-012 12 -TEXT- :EXPRESSION MUST BE

ENCLOSED IN PARENS

Explanation: The data string following the directive is

not enclosed in parentheses.

User Response: Enclose expression in parentheses as

required.

SETW02-013 12 -TEXT- :ILLEGAL TERMINATION

OF SETB EXPRESSION

Explanation: The SETB expression is illegally

terminated. A non-blank was coded following the last

bracket of expression.

User Response: Remove the extraneous characters.

SETW02-014 12 -TEXT- :UNPAIRED PARENS OR

ILLEGAL TERMINATION OF STRING

Explanation: The number of left parentheses is not

equal to the number of right parentheses in the

expression, which are not a part of a quoted string. The

-TEXT- is the tail-end of the last data examined.

User Response: Make sure that you have an even

number of left and right parentheses. If the error

occurred on a Migration Utility macro, see note 2 on

page 231.

SETW02-002 12 • SETW02-014 12

326 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

SETW02-015 12 -TEXT- :EXPRESSION EXCEEDS

MAXIMUM ALLOWABLE SIZE

Explanation: The target macro reference label

expression exceeds 256 characters.

User Response: Limit your expression to maximum of

256 characters.

SETW02-017 12 -TEXT- :ILLEGAL TARGET

REFERENCE LABEL

Explanation: The target macro reference label

expression is too short.

User Response: Limit your expression to maximum of

2 characters.

SETW02-018 12 -TEXT- :ILLEGAL FORM OF

EXPRESSION FOR SETB DIRECTIVE

Explanation: The expression following the SETB

directive is not enclosed in parentheses, or it is not a

valid Boolean variable (which is either 0 or 1).

User Response: The SETB directive requires that an

explicit non-boolean expression be enclosed in

parentheses. Correct it as required.

SETW03-001 12 :FS-PEngiCCL LOGIC ERROR

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

SETW03-002 12 :INPUT STRING IS TOO LONG

Explanation: The work buffer cannot accommodate

the input data string. The string in error is displayed

before the message.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters.

SETW03-003 12 :INCOMPLETE CONTINUATION

LINE

Explanation: A non-blank character was found in

position 72 of the last statement, but there were no

more statements to input. A non-blank character in

position 72 denotes continuation and therefore

continuation statements are expected.

User Response: Add the necessary continuation

statements or remove the non-blank character from

position 72.

SETW03-004 12 -TEXT- :NON-BLANK FOUND

BEFORE CONTINUATION COLUMN

Explanation: A non-blank was coded in position 72 of

the previous statement, implying continuation, but data

was located before continuation column 16 of this

statement.

User Response: All continuation lines inside

PEngiCCL macros must start in position 16. Correct the

statement in error.

SETW04-001 12 -TEXT- :FS-PEngiCCL LOGIC

ERROR

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

SETW04-002 12 -TEXT- :ILLEGAL OPCODE OR

ILLEGAL EXPRESSION

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

SETW04-004 12 -TEXT- :REQUIRED DATA IS NOT

LOCATED

Explanation: The macro has been illegally placed near

position 72.

User Response: Code the macro instruction within the

first 32 positions following the macro label if any.

SETW04-005 12 :INPUT STRING IS TOO LONG

Explanation: The work buffer cannot accommodate

the input data string. The string in error is displayed

before the message.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters.

SETW04-006 12 :UNPAIRED QUOTES IN

EXPRESSION

Explanation: An uneven number of quotes was

detected in a data string which starts with a quote.

User Response: A data string which is enclosed in

quotes must contain an even number of quotes. Add

the necessary quote.

SETW02-015 12 • SETW04-006 12

Chapter 14. Messages 327

SETW04-007 12 :INCOMPLETE CONTINUATION

LINE

Explanation: A non-blank character was found in

position 72 of the last statement, but there were no

more statements to input. A non-blank character in

position 72 denotes continuation and therefore

continuation statements are expected.

User Response: Add the necessary continuation

statements or remove the non-blank character from

position 72.

SETW04-008 12 -TEXT- :NON-BLANK FOUND

BEFORE CONTINUATION COLUMN

Explanation: A non-blank was coded in position 72 of

the previous statement, implying continuation, but data

was located before continuation column 16 of this

statement.

User Response: All continuation lines inside

PEngiCCL macros must start in position 16. Correct the

statement in error.

SETW04-009 12 :INCOMPLETE CONTINUATION

LINE

Explanation: A non-blank character was found in

position 72 of the last statement, but there were no

more statements to input. A non-blank character in

position 72 denotes continuation and therefore

continuation statements are expected.

User Response: Add the necessary continuation

statements or remove the non-blank character from

position 72.

SETW04-010 12 -TEXT- :NON-BLANK FOUND

BEFORE CONTINUATION COLUMN

Explanation: A non-blank was coded in position 72 of

the previous statement, implying continuation, but data

was located before continuation column 16 of this

statement.

User Response: All continuation lines inside

PEngiCCL macros must start in position 16. Correct the

statement in error.

SETW05-001 12 -TEXT- :PREPROCESSOR LOGIC

ERROR

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

SETW05-005 12 :INPUT STRING IS TOO LONG

Explanation: The work buffer cannot accommodate

the input data string. The string in error is displayed

before the message. Also see note 3 on page 231.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters.

SETW05-006 12 :UNPAIRED QUOTES IN

EXPRESSION

Explanation: an uneven number of quotes was

detected in a data string which starts with a quote.

User Response: A data string which is enclosed in

quotes must contain an even number of quotes. Add

the necessary quote. Also see note 3 on page 231.

SETW05-007 12 -TEXT- :INCOMPLETE

CONTINUATION LINE

Explanation: A non-blank character was found in

position 72 of the last statement, but there were no

more statements to input. A non-blank character in

position 72 denotes continuation and therefore

continuation statements are expected.

User Response: Add the necessary continuation

statements or remove the non-blank character from

position 72. Also see note 3 on page 231.

SETW05-008 12 -TEXT- :NON-BLANK FOUND

BEFORE CONTINUATION COLUMN

Explanation: A non-blank was coded in position 72 of

the previous statement, implying continuation, but data

was located before continuation column 16 of this

statement.

User Response: All continuation lines inside

PEngiCCL macros must start in position 16. Correct the

statement in error. Also see note 3 on page 231.

SETW05-009 12 -TEXT- :INCOMPLETE

CONTINUATION LINE

Explanation: A non-blank character was found in

position 72 of the last statement, but there were no

more statements to input. A non-blank character in

position 72 denotes continuation and therefore

continuation statements are expected.

User Response: Add the necessary continuation

statements or remove the non-blank character from

position 72. Also see note 3 on page 231.

SETW04-007 12 • SETW05-009 12

328 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

SETW05-010 12 -TEXT- :NON-BLANK FOUND

BEFORE CONTINUATION COLUMN

Explanation: A non-blank was coded in position 72 of

the previous statement, implying continuation, but data

was located before continuation column 16 of this

statement.

User Response: All continuation lines inside

PEngiCCL macros must start in position 16. Correct the

statement in error. Also see note 3 on page 231.

SETW05-012 12 -TEXT- :ILLEGAL VALUE IN CC 7

Explanation: The character in position seven is not a

″*″, ″/″, ″-″ or a space.

User Response: Remove the invalid character.

SETW05-013 12 :EXPECTING CONTINUATION IN

CC 72

Explanation: A comma was detected following the last

data string in the macro prototype model, but the

continuation position 72 does not contain a non-blank

character. This error occurs only when IBM macro

conventions are being used. That is, for macros that do

not start with a macro delimiter.

User Response: Code a non-blank in position 72 to

indicate continuation.

SETW06-001 12 :SYNTAX ERROR, MNOTE

REQUIRES CONDITION CODE

Explanation: An MNOTE directive was coded without

the message.

User Response: Code a condition code and a message

enclosed in quotes following the directive.

SETW06-003 12 :INPUT STRING IS TOO LONG

Explanation: The work buffer cannot accommodate

the input data string. The string in error is displayed

before the message.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters.

SETW06-004 12 -TEXT- :REQUIRED STRING IS

NOT IN QUOTES

Explanation: The data string in the statement

displayed before this message does not start with a

quote.

User Response: Enclose the data string in quotes as

required.

SETW06-005 12 :UNPAIRED QUOTES, NO

CONTINUATION

Explanation: The end of data string which starts with

a quote was reached before the end quote could be

located.

User Response: A data string which is enclosed in

quotes must contain an even number of quotes. Add

the necessary quote.

SETW06-006 12 :UNPAIRED QUOTES IN QUOTED

STRING

Explanation: An uneven number of quotes was

detected in a data string which started with a quote.

User Response: A data string which is enclosed in

quotes must contain an even number of quotes. Add

the necessary quote.

SETW06-007 12 :INPUT STRING IS TOO LONG

SETW06-008 12 :INPUT STRING IS

TOO LONG

Explanation: The work buffer cannot accommodate

the input data string. The string in error is displayed

before the message.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters.

SETW06-009 12 :INCOMPLETE CONTINUATION

LINE

Explanation: A non-blank character was found in

position 72 of the last statement, but there were no

more statements to input. A non-blank character in

position 72 denotes continuation and therefore

continuation statements are expected.

User Response: Add the necessary continuation

statements or remove the non-blank character from

position 72.

SETW06-010 12 -TEXT- :NON-BLANK FOUND

BEFORE CONTINUATION COLUMN

Explanation: A non-blank was coded in position 72 of

the previous statement, implying continuation, but data

was located before continuation column 16 of this

statement.

User Response: All continuation lines inside

PEngiCCL macros must start in position 16. Correct the

statement in error.

SETW05-010 12 • SETW06-010 12

Chapter 14. Messages 329

SETW07-001 12 MACNAME :NO DATA IN INPUT

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

SETW07-002 12 MACNAME :EXCEEDS BUFFER

CAPACITY

Explanation: The work buffer cannot accommodate

the input data string. The string in error is displayed

before the message.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters.

SETW07-003 12 :INCOMPLETE CONTINUATION

LINE

Explanation: A non-blank character was found in

position 72 of the last statement, but there were no

more statements to input. A non-blank character in

position 72 denotes continuation and therefore

continuation statements are expected.

User Response: Add the necessary continuation

statements or remove the non-blank character from

position 72.

SETW07-004 12 -TEXT- :NON-BLANK FOUND

BEFORE CONTINUATION COLUMN

Explanation: A non-blank was coded in position 72 of

the previous statement, implying continuation, but data

was located before continuation column 16 of this

statement.

User Response: All continuation lines inside

PEngiCCL macros must start in position 16. Correct the

statement in error.

SETW08-001 12 :NO DATA IN INPUT

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

SETW08-002 12 :INPUT STRING IS TOO LONG

Explanation: The work buffer cannot accommodate

the input data string. The string in error is displayed

before the message.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters.

SETW08-003 12 :INCOMPLETE CONTINUATION

LINE

Explanation: A non-blank character was found in

position 72 of the last statement, but there were no

more statements to input. A non-blank character in

position 72 denotes continuation and therefore

continuation statements are expected.

User Response: Add the necessary continuation

statements or remove the non-blank character from

position 72.

SETW08-004 12 -TEXT- :NON-BLANK FOUND

BEFORE CONTINUATION COLUMN

Explanation: A non-blank was coded in position 72 of

the previous statement, implying continuation, but data

was located before continuation column 16 of this

statement.

User Response: All continuation lines inside

PEngiCCL macros must start in position 16. Correct the

statement in error.

SETW09-001 12 -TEXT- :IMPROPER VARIABLE

SYMBOL IN PROTOTYPE NAME

Explanation: The macro label variable symbol did not

start with a “&” or it is too long.

User Response: Correct the variable symbol as

required.

SETW09-002 12 -TEXT- :FS-PEngiCCL LOGIC

ERROR

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

SETW09-004 12 -TEXT- :MACRO NAME IS TOO

LONG

Explanation: The macro name exceeds 12 characters.

User Response: Code the correct macro name. Note

that the macro name can be up to 8 characters long on

MVS/XA and VM/CMS operating systems, because of

the PDS and CMS member naming conventions.

However, temporary macro names can be up to 12

characters long.

SETW09-005 12 :INPUT STRING IS TOO LONG

Explanation: The work buffer cannot accommodate

the input data string. The string in error is displayed

before the message.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

SETW07-001 12 • SETW09-005 12

330 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters.

SETW09-006 12 :UNPAIRED QUOTES IN

EXPRESSION

Explanation: An uneven number of quotes was

detected in a data string which starts with a quote.

User Response: A data string which is enclosed in

quotes must contain an even number of quotes. Add

the necessary quote.

SETW09-007 12 :INCOMPLETE CONTINUATION

LINE

Explanation: A non-blank character was found in

position 72 of the last statement, but there were no

more statements to input. A non-blank character in

position 72 denotes continuation and therefore

continuation statements are expected.

User Response: Add the necessary continuation

statements or remove the non-blank character from

position 72.

SETW09-008 12 -TEXT- :NON-BLANK FOUND

BEFORE CONTINUATION COLUMN

Explanation: A non-blank was coded in position 72 of

the previous statement, implying continuation, but data

was located before continuation column 16 of this

statement.

User Response: All continuation lines inside

PEngiCCL macros must start in position 16. Correct the

statement in error.

SETW09-009 12 :INCOMPLETE CONTINUATION

LINE

Explanation: A non-blank character was found in

position 72 of the last statement, but there were no

more statements in input. A non-blank character in

position 72 denotes continuation and therefore

continuation statements are expected.

User Response: Add the necessary continuation

statements or remove the non-blank character from

position 72.

SETW09-010 12 -TEXT- :NON-BLANK FOUND

BEFORE CONTINUATION COLUMN

Explanation: A non-blank was coded in position 72 of

the previous statement, implying continuation, but data

was located before continuation column 16 of this

statement.

User Response: All continuation lines inside

PEngiCCL macros must start in position 16. Correct the

statement in error.

SETW09-011 12 :UNEXPECTED CONTINUATION

IN CC72

Explanation: A blank was detected following the last

data string in the macro prototype model, but the

continuation position 72 contained a non-blank

character. This error can be caused by an erroneous

character in position 72 due to overlapping comments.

User Response: The macro prototype model coding

standards require that a comma (,) is placed after the

last data string on each line whenever continuation

lines follow. The comma must not be placed on the last

line. Correct the statement as required.

SETW10-004 12 -TEXT- :UNKNOWN ACCL

FUNCTION

Explanation: The supported function is not supported

by ACCL directive.

User Response: None. Use the correct function.

SETW10-005 12 -TEXT- :INPUT STRING IS TOO

LONG

Explanation: The work buffer cannot accommodate

the input data string. The string in error is displayed

before the message.

User Response: The default work buffer size is

generated at PEngiCCL installation time. You can

increase the buffer size by coding the BUFSIZE=NNN

in the PEngiCCL COPTION parameters.

SETW10-006 12 -TEXT- :UNPAIRED QUOTES IN

EXPRESSION

Explanation: An uneven number of quotes was

detected in a data string which starts with a quote.

User Response: A data string which is enclosed in

quotes must contain an even number of quotes. Add

the necessary quote.

SETW10-007 12 -TEXT- :INCOMPLETE

CONTINUATION LINE

Explanation: A non-blank character was found in

position 72 of the last statement, but there were no

more statements to input. A non-blank character in

position 72 denotes continuation and therefore

continuation statements are expected.

User Response: Add the necessary continuation

statements or remove the non-blank character from

position 72.

SETW09-006 12 • SETW10-007 12

Chapter 14. Messages 331

SETW10-008 12 -TEXT- :NON-BLANK FOUND

BEFORE CONTINUATION COLUMN

Explanation: A non-blank was coded in position 72 of

the previous statement, implying continuation, but data

was located before continuation column 16 of this

statement.

User Response: All continuation lines inside

PEngiCCL macros must start in position 16. Correct the

statement in error.

SETW10-009 12 -TEXT- :INCOMPLETE

CONTINUATION LINE

Explanation: The same as the message SETW10-007.

SETW10-010 12 -TEXT- :NON-BLANK FOUND

BEFORE CONTINUATION COLUMN

Explanation: The same as the message SETW10-008.

SRTMOD-001 12 MACNAME :FSBUSORT ERROR

SORTING REFERENCE LABELS

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

VSMF00-001 12 INPUT STRING IS TOO LONG

Explanation: Input string exceeds 2048 characters.

This can be caused by unpaired quotes or parentheses.

User Response: Correct the problem.

VSMF00-002 12 UNPAIRED PARENS/QUOTES

(CHECK CC 72)

Explanation: Unpaired parens or quotes in the user

parameters.

User Response: Make sure that you have paired

parentheses or quotes.

VSMF00-003 12 TOO MANY FUNCTION

PARAMETERS

Explanation: Inline function number of user

parameters exceeds that allowed by the function model.

User Response: Code the correct number of

parameters.

VSMF00-004 12 KEYWORD PARAMETERS ARE

NOT ALLOWED

Explanation: A keyword parameter was coded in the

function parameters.

User Response: Keywords are not allowed in the

function parameter list. Remove it.

VSMF00-005 12 EXTRANEOUS DATA AFTER

BRACKETED STRING

Explanation: The character past the last paired

parenthesis is not a right parenthesis, a space, a comma

or a period.

User Response: Remove extraneous character.

VSMF00-006 12 EXTRANEOUS DATA AFTER

QUOTED STRING

Explanation: The character post last paired quote is

not a right parenthesis, a left parenthesis, a space or a

comma.

User Response: Remove extraneous character.

VSMF00-007 12 END QUOTE IS MISSING IN

QUOTED STRING

Explanation: COBOL continuation line was detected

but the continued line does not start with a quote.

User Response: Place end quote where it belongs.

VSMF00-008 12 RESULTING FUNCTION NAME IS

TOO LONG

Explanation: Derived function paragraph name is

more than 30 characters long.

User Response: For each function, Migration Utility

generates a COBOL paragraph name under which it

expands COBOL logic associated with the function.

Subsequently, the generated paragraph is performed

whenever such function is encountered in the COBOL

source.

 Local function paragraph name is composed of the

function name, and a 6 digit sequence number. For

example SEL_READ-FILE (..): function paragraph

name would be F00000-READ-FILE:. Thus the function

name can be maximum 23 characters.

 CON_OBJECT (&OBJECT &OPTION) and SEL_OBJECT

(&OBJECT &OPTION) function paragraph name is

composed of the function type, the object name, and

the option, preceded by the sequence number.

 For example SEL_OBJECT (FILEIN1 READ): function

paragraph name would be F00000-SEL-FILEIN1-READ:.

Thus the object name plus the option can be maximum

of 19 characters (including the dash).

VSM000-001 00 MEMBER :PROGRAM ERROR,

FSVSMADD FOR EXISTING MEMBER

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

SETW10-008 12 • VSM000-001 00

332 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

User Response: Contact PEngiCCL software support

center.

VSM000-002 00 MEMBER :INSUFFICIENT

VIRTUAL STORAGE

Explanation: PEngiCCL preprocessor ran out of

virtual storage.

User Response: On MVS/XA systems increase the

REGION size on the EXEC statement. On VM/CMS

systems increase the virtual storage of your CMS

machine.

VSM000-003 00 MEMBER :PROGRAM ERROR,

FSVSMDSA FOR NON EXISTING

MEMBER

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

VSM000-004 00 MEMBER :INSUFFICIENT

VIRTUAL STORAGE

Explanation: PEngiCCL preprocessor ran out of

virtual storage.

User Response: On MVS/XA systems increase the

REGION size on the EXEC statement. On VM/CMS

systems increase the virtual storage of your CMS

machine.

VSM000-005 00 MEMBER :MEMBER NOT

LOCATED, FSVSMLOC CALL

Explanation: A request to locate a member in the

virtual storage manager pool resulted in ″Not Found″

condition. This message is for the internal PEngiCCL

use only.

User Response: NONE.

VSM000-006 00 MEMBER :PROGRAM ERROR, NO

C/B CHAIN POINTERS

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

VSM000-007 00 MEMBER :INSUFFICIENT

VIRTUAL STORAGE

Explanation: PEngiCCL preprocessor ran out of

virtual storage.

User Response: On MVS/XA systems increase the

REGION size on the EXEC statement. On VM/CMS

systems increase the virtual storage of your CMS

machine.

VSM000-008 00 MEMBER :PROGRAM ERROR, NO

C/B CHAIN POINTERS

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

VSM000-009 00 MEMBER :DATA EXCEEDS V.S.M.

BUFFER CAPACITY

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

VSM001-001 00 MEMBER :MEMBER NOT

LOCATED, FSVSMLOC CALL

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

VSM001-002 00 MEMBER :PROGRAM ERROR, NO

C/B CHAIN POINTERS

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

VSM001-003 00 MEMBER :PROGRAM ERROR,

FREEMAIN/FREEVIS ERROR

Explanation: An internal PEngiCCL Macro

Preprocessor logic error.

User Response: Contact PEngiCCL software support

center.

VSM000-002 00 • VSM001-003 00

Chapter 14. Messages 333

Parallel testing utility messages

FSYATTCH-01,012 PROGRAM ″&PROGRAM″

LOAD ERROR

Explanation: The program &PROGRAM cannot be

located in the specified load libraries.

User Response: Verify that you are using the correct

Migration Utility libraries. Verify the //STEPLIB and

the //JOBLIB respectively. Consult with your

Migration Utility administrator (installer) for the correct

Migration Utility load libraries.

FSYGDBD0-01,012 PROGRAM ″&PROGRAM″

LOAD ERROR

Explanation: The program &PROGRAM cannot be

located in the specified load libraries.

User Response: Verify that you are using the correct

Migration Utility libraries. Verify the //STEPLIB and

the //JOBLIB respectively. Consult with your

Migration Utility administrator (installer) for the correct

Migration Utility load libraries.

FSYGDBD0-02,012 ERROR OPENING IMS

DDNAME

Explanation: IMS ddname is not specified in the JCL.

User Response: Add ″//IMS DD . . .″ name to your

JCL. To access IMS, you need the PSBLIB(s) and the

DBDLIB(s) specified in the JCL via the IMS ddname.

FSYGDBD0-03,012 CANNOT LOCATE DBD:

&DATABASE, SEG: &SEGMENT

Explanation: The segment name &SEGMENT cannot

be located in the &DATABASE table.

User Response: Verify that you have the correct PSB

name specified in the PARM= on your EXEC statement

and that you have the correct IMS files defined in the

JCL. &SEGMENT is the name of the DLI segment in

your program. The &DATABASE is the DBD name

passed to your program by the DLI interface, in the

PCB for the data base you are accessing. Make sure

that the segment you are accessing is defined in your

data base. If problem persists, seek help from your DLI

administrator.

FSY003E–FSYGPCB0 DBD &DATABASE CANNOT

BE RESOLVED

Explanation: Your COBOL program cannot resolve

&DATABASE from the PCBs passed to it by the

DFSRRC00 DLI interface program. FSYGPCB0 is the

program that issued this error.

User Response: &DATABASE is the DBD name

specified in your program. This DBD cannot be located

in any PCBs passed to your program by the DLI

interface. Make sure that the DBD name you are

accessing is correct. Verify that the correct PSB name is

specified in the PARM= on your EXEC statement and

that you have the correct IMS files defined in the JCL.

If the problem persists, seek help from your DLI

administrator.

FSYMIGS0-01,012 FJYMIG0 FILE OPEN ERROR

Explanation: FJYMIG0 file cannot be opened. Main

program is FSYMIG00, the subprogram that issued this

message is FSYMIGS0.

User Response: FJYMIG0 file is dynamically allocated

by the FSYMIG00 program as follows:

1. For job steps that execute a linked Easytrieve Plus

program, the data set name is obtained from the

definition of //FJYMIG0 in the #FJICNTL control

file. Make sure that //FJYMIG0 is pointing to a

valid PDS file that contains the file information

member generated by the conversion PROC.

2. For Link and Go Easytrieve Plus job steps, this file

is allocated to the FJSYSP0 file produced by the

Migration Utility translator step. This file is

internally generated for all Link and Go jobs by

FSYMIG00. Check the console for any informational

messages that might indicate a failed allocation

attempt. If this problem occurred with a Link and

Go step, verify the MODEL= parameter in the

#EZTPROC to make sure that you have read and

write access to such a qualifier.

FSYMIGS1-01,012 FJPROC0 FILE OPEN ERROR

Explanation: FJPROC0 file cannot be opened. Main

program is FSYMIG00, the subprogram that issued this

message is FSYMIGS1. The #EZTPROC pointed to by

FSYPROCS default table cannot be located.

User Response: Verify that you are using the correct

Migration Utility libraries. Verify the //STEPLIB and

the //JOBLIB respectively. Consult with your

Migration Utility administrator (installer) for the correct

Migration Utility load libraries.

FSYMIGS1-02,012 PROGRAM ″&PROGRAM″

LOAD ERROR

Explanation: The program &PROGRAM cannot be

located in the specified load libraries.

User Response: Verify that you are using the correct

Migration Utility libraries. Verify the //STEPLIB and

the //JOBLIB respectively. Consult with your

Migration Utility administrator.

FSYATTCH-01,012 • FSYMIGS1-02,012

334 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

FSYMIGS2-02,012 PROGRAM ″&PROGRAM″

LOAD ERROR

Explanation: The program &PROGRAM cannot be

located in the specified load libraries.

User Response: Verify that you are using the correct

Migration Utility libraries. Verify the //STEPLIB and

the //JOBLIB respectively. Consult with your

Migration Utility administrator.

FSYMIG00 PROC=&MEMBER ERROR

STMT=NNNNNN NEAR TEXT

″&TEXT″

Explanation: The FSYMIG00 program detected an

error in the &MEMBER file. &MEMBER is the name of

the PDS member being decoded. NNNNNN is the

statement in error. &TEXT is the text in error. This error

can be issued for two reasons:

1. The JOB/JCL pointed to by the FJIJOB0 does not

contain a valid JOB statement on the first line.

2. The ″//TEST-COMPILERS″ or ″//PROD-
COMPILERS″ statement in the #FJICNTL file is not

followed by one or more &EZNAME=&MUNAME

valid module names.

User Response: Correct the statements in error.

FSYMIG00 JOB ---> &JOBNAME

STEP=&STEPNAME &EXEC

Explanation: This is an informational message that

shows the progress of the FSYMIG00 run. This message

is issued for each job step while interpreting the input

job. This information is useful for debugging, if there is

a problem with the FSYMIG00 run.

User Response: None.

FSYMIG00 PROC ---> &PROCNAME

STEP=&STEPNAME &EXEC

Explanation: This is an informational message that

shows the progress of the FSYMIG00 run. This message

is issued for each PROC step while interpreting PROCS

in the input job. This information is useful for

debugging, if there is a problem with the FSYMIG00

run.

User Response: None.

FSYMIG00-01,012 &FILE FILE OPEN ERROR

Explanation: The file &FILE cannot be opened.

User Response: Make sure the &FILE ddname is

defined in the JCL. If &FILE is FJPROC0, and you have

FJPROC0 coded in the JCL, make sure that it points to

a valid PDS with a valid proc name. If you do not have

FJPROC0 coded in the JCL, verify that the proc name

in the FSYPROCS table specifies the correct proc name

located in the SYS1.SFSYJCL Migration Utility library.

FSYMIG00-02,012 PROGRAM ″&PROGRAM″

LOAD ERROR

Explanation: The program &PROGRAM cannot be

located in the specified load libraries.

User Response: Verify that you are using the correct

Migration Utility libraries. Verify the //STEPLIB and

the //JOBLIB respectively. Consult with your

Migration Utility administrator.

FSYMIG00-03,012 PROC ″&PROCNAME″ NOT

FOUND

Explanation: The input job being interpreted by

FSYMIG00 program contains a PROC that cannot be

located in the FJIPROC library specified in your

FSYMIG00 JCL.

User Response: FSYMIG00 program scans all PROCS

found in the JOB it is tailoring. Make sure that the

FJIPROC in the FSYMIG00 JCL concatenates all data

sets where PROCS are located.

FSYMIG05-01,012 PROGRAM ″&PROGRAM″

LOAD ERROR

Explanation: The program &PROGRAM cannot be

located in the specified load libraries.

User Response: Verify that you are using the correct

Migration Utility libraries. Verify the //STEPLIB and

the //JOBLIB respectively. Consult with your

Migration Utility administrator.

FSYMIG10-01,012 &FILE FILE OPEN ERROR

Explanation: The file &FILE cannot be opened.

User Response: Make sure the &FILE ddname is

defined in the JCL. If &FILE is FJPROC0, and you have

FJPROC0 coded in the JCL, make sure that you are

pointing to a valid PDS with a valid proc name. If you

do not have FJPROC0 coded in the JCL, verify that the

proc name in the FSYPROCS table specifies the correct

proc name located in the SYS1.SFSYJCL Migration

Utility library.

FSYMIG10-02,012 PROGRAM ″&PROGRAM″

LOAD ERROR

Explanation: The program &PROGRAM cannot be

located in the specified load libraries.

User Response: Verify that you are using the correct

Migration Utility libraries. Verify the //STEPLIB and

the //JOBLIB respectively. Consult with your

Migration Utility administrator.

FSYMIGS2-02,012 • FSYMIG10-02,012

Chapter 14. Messages 335

FSYSTAE0 ABENDCHK INTERRUPT OCCURRED

Explanation: A program check or an ABEND occurred

in the main task while running a job step.

User Response: This is an informational message.

Refer to system generated messages, abend

information, and log files for the actual cause of the

interrupt.

FSYSTAE0 ABENDCK2 INTERRUPT OCCURRED

Explanation: A program check or an ABEND occurred

in a sub task while running a job step.

User Response: This is an informational message.

Refer to system generated messages, abend

information, and log files for the actual cause of the

interrupt.

FSYSVC99 TEXT ERROR NEAR ″&TEXT″

Explanation: An inappropriate dynamic allocation

parameter/text was passed to the FSYSVC99 dynamic

allocator program.

User Response: This error can occur for two reasons:

1. Due to incorrect statements in the

#EZTPROC/#CNVPROC. These PROCS are

normally tailored at system installation time. Report

any errors to your Migration Utility system

administrator.

2. Due to inappropriate text passed to FSYSVC99 by

the Migration Utility programs. Report these types

of errors to the IBM support center. To assist

debugging, turn on FSYSVC99 program messages

by coding the following statement in the JCL:

//FJSVC99 DD DSN=&FJSVC99(MSGALL)

This statement will cause printing of the

system-generated messages that may lead to the actual

cause.

Note: This switch is not for normal use. Remove

//FJSVC99 from your JCL when no longer

needed.

FSYTPA00 PROC=&PROCNAME ERROR

STMT=NNNNNN NEAR TEXT

″&TEXT″

Explanation: The translator driver program detected

an error in the &PROCNAME proc.

User Response: &PROCNAME is the name of the

proc. This proc is normally obtained from the system

default FSYPROCS table or from the FJPROC0 DD

name, if coded in the JCL. NNNNNN is the statement

in error. &TEXT is the text in error. The proc is

expected to contain valid JCL statements. If you are

using your own proc, correct the statement in error.

Otherwise consult with the Migration Utility installer

(administrator) for corrective action.

FSYTPA00-01,012 FJPROC0 FILE OPEN ERROR

Explanation: FJPROC0 file cannot be opened.

User Response: This proc is normally obtained from

the system default FSYPROCS table or from the

FJPROC0 ddname, if coded in the JCL. If you have

FJPROC0 coded in the JCL, make sure that it points to

a valid PDS with a valid proc name. If you do not have

FJPROC0 coded in the JCL, verify that the proc name

in the FSYPROCS table specifies the correct proc name

located in the SYS1.SFSYJCL Migration Utility library.

FSYTPA00-02,012 PROGRAM ″&PROGRAM″ LOAD

ERROR

Explanation: The program &PROGRAM cannot be

located in the specified load libraries.

User Response: Verify that you are using the correct

Migration Utility libraries. Verify the //STEPLIB and

the //JOBLIB respectively. Consult with your

Migration Utility administrator (installer) for the correct

Migration Utility load libraries.

FSYSTAE0 • FSYTPA00-02,012

336 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Runtime I/O error messages

FSY001E message text

Explanation: This message is issued by Migration

Utility when:

v A serious error is detected while loading Migration

Utility macros byte code.

 In general, this indicates a corrupt SYS1.SFSYFJCC

library pointed to by the FJCCLLB ddname. Make

sure that your library has not been corrupted and

that you are pointing to the correct byte code PDS.

v A serious error is detected in sub-modules while

simulating logical operations during application run

time. This is a user error.

User Response: The message text printed is

self-explanatory.

FSY001I message text

Explanation: This is an informational message,

typically printed after an E-level message is

encountered.

FSY002E &MODNAME: message text

Explanation: This message is issued by Migration

Utility whenever a serious error is detected in the

dynamic I/O modules during the application run time.

User Response: The message text printed is

self-explanatory.

 Many unrecoverable I/O error conditions are intercepted by IBM standard I/O error routines. Always

check console for messages not included in this manual.

FSY001E • FSY002E

Chapter 14. Messages 337

VSAM I/O error supplemental RPL information

When running in dynamic mode, Migration Utility run-time VSAM I/O modules

return COBOL-compliant STATUS-CODE to the application program, along with

the RPL information as saved at the time of error.

When an application program abnormally terminates via the FSABECOB program,

the RPL information is displayed on SYSOUT and FJSYABE files as a supplement

to the STATUS-CODE error as follows:

FSDYNKSO: VSAM ERROR: &DNAME,&FUNCTION,RPLRTNCD=NN,RPLERRCD=NN,RPLCMPON=NN,

RPLFUNCD=NN

The displayed codes RPLRTNCD, RPLERRCD, and RPLCMPON are the values

found in the RPL. These meaning of these codes can be found in the VTAM/VSAM

Messages and Codes manual.

Parallel testing utility messages

338 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Appendix. Migration Utility JCL

This appendix lists the supplied JCL for running Migration Utility and the

FSYMIG00 control file.

JCMUCLGJ—Translate, link and go (no proc)

JCMUCLGJ can be found in SYS1.SFSYJCLS. It performs a one-step translate, link

and go without a proc.

//FSOFT01V JOB ,,NOTIFY=FSOFT01,

// CLASS=A,MSGCLASS=X,COND=(5,LT),REGION=0M

//*

//JOBLIB DD DSN=SYS1.SFSYLOAD,

// DISP=SHR

//***

//* COPYRIGHT (C) 1989-2004, FOUNDATION SOFTWARE, INC. *

//* ALL RIGHTS RESERVED - PROPERTY OF FOUNDATION SOFTWARE, INC. *

//* *

//* 5697-I89 (C) COPYRIGHT IBM CORP 2001, 2002, 2003, 2004. *

//* ALL RIGHTS RESERVED. LICENSED MATERIAL - PROPERTY OF IBM. *

//* USE, DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP. *

//* *

//* REV. 01/20/2004 *

//***

//* JCMUCLGJ - COMPILE & LINK AND EXECUTE PENGIEZT/MU PROGRAM *

//* (LINK AND GO) *

//***

//*

//FSYTPA00 EXEC PGM=FSYTPA00,PARM=

//* ADDITIONAL SYSLIB DSNS CAN BE CODED FOR YOUR OWN INCLUDES.

//SYSLIB DD DSN=SYS1.SFSYLOAD,

// DISP=SHR

//* PANDD MUST POINT TO YOUR OWN EASYTRIEVE PLUS MACROS.

//* CONSULT WITH SYSTEM PROGRAMMER FOR THE CORRECT DDNAME AS

//* IT CAN BE CHANGED AT INSTALLATION TIME. (SEE #EZTPROC).

//* (THIS IS AN OPTIONAL STATEMENT. COMMENT OUT IF NOT NEEDED)

//PANDD DD DSN=???????.MUCONV.EZPLUS.MACROS,

// DISP=SHR

//SYSOUT DD SYSOUT=*

//SYSLIST DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//REPORT1 DD SYSOUT=*

//FILEIN DD DSN=SYS1.????(TESTFIL0),

// DISP=SHR

//SYSIN DD DSN=SYS1.SFSYEZTS(TESTMU00),

// DISP=SHR

/*

//

Figure 7. JCMUCLGJ—one-step translate, link and go (no proc)

© Copyright IBM Corp. 2002, 2005 339

JCMUCLGP—Translate, link and go (instream proc)

JCMUCLGP can be found in SYS1.SFSYJCLS. It performs a one-step translate, link

and go using an instream proc.

//FSOFT01V JOB ,,NOTIFY=FSOFT01,

// CLASS=A,MSGCLASS=X,COND=(5,LT),REGION=0M

//JOBLIB DD DSN=SYS1.SFSYLOAD,

// DISP=SHR

//***

//* COPYRIGHT (C) 1989-2004, FOUNDATION SOFTWARE, INC. *

//* ALL RIGHTS RESERVED - PROPERTY OF FOUNDATION SOFTWARE, INC. *

//* *

//* 5697-I89 (C) COPYRIGHT IBM CORP 2001, 2002, 2003, 2004. *

//* ALL RIGHTS RESERVED. LICENSED MATERIAL - PROPERTY OF IBM. *

//* USE, DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP. *

//* *

//* REV. 01/20/2004 *

//***

//* JCMUCLGP - COMPILE, LINK AND EXECUTE IN ONE STEP - INSTREAM PROC *

//***

//FSPENGI PROC SYSOUT=’*’,

//** FJSYSPH=???????.MUCONV.COBSRC, OPTIONAL GENED COBOL

//** FJPROC0=SYS1.SFSYJCLS(#EZTPROC), OPTIONAL PROC

// SYSLIB1=SYS1.SFSYLOAD, PENGIEZT/MU LOADLIB

// PANDD=???????.MUCONV.EZPLUS.MACROS, YOUR EZT MACROS

// SYSIN=SYS1.SFSYEZTS, INPUT EZT PROGRAM

//* INPUT FILE FOR THE TEST PROGRAMS. CONSRUCT YOUR OWN FILES AS NEEDED

// FILEIN=SYS1.????(TESTFIL0),

// MEMBER=GO, PROGRAM NAME

// PARAM= POSSIBLE USER PARMS

//*---*

//FSYTPA00 EXEC PGM=FSYTPA00,PARM=&PARAM

//**FJPROC0 DD DSN=&FJPROC0,

//** DISP=SHR

//**FJSYSPH DD DSN=&FJSYSPH(&MEMBER),

//** DISP=OLD

//* ADDITIONAL SYSLIB DSNS CAN BE CODED FOR YOUR OWN INCLUDES.

//SYSLIB DD DSN=&SYSLIB1,

// DISP=SHR

//* PANDD MUST POINT TO YOUR OWN EASYTRIEVE PLUS MACROS.

//* CONSULT WITH SYSTEM PROGRAMMER FOR THE CORRECT DDNAME AS

//* IT CAN BE CHANGED AT INSTALLATION TIME. (SEE #EZTPROC).

//* (THIS IS AN OPTIONAL STATEMENT. COMMENT OUT IF NOT NEEDED)

//PANDD DD DSN=&PANDD,

// DISP=SHR

//SYSOUT DD SYSOUT=&SYSOUT

//SYSLIST DD SYSOUT=&SYSOUT

//SYSPRINT DD SYSOUT=&SYSOUT

//REPORT1 DD SYSOUT=&SYSOUT

//FILEIN DD DSN=&FILEIN,

// DISP=SHR

//SYSIN DD DSN=&SYSIN(&MEMBER),

// DISP=SHR

// PEND

//*

//STEP010 EXEC PROC=FSPENGI,MEMBER=MUTEST01

/*

//

Figure 8. JCMUCLGP—one-step translate, link and go (instream proc)

JCMUCLGP

340 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

JCMUCL1J—Translate and link (no proc)

JCMUCL1J can be found in SYS1.SFSYJCLS. It performs a one-step translate and

link without a proc.

//FSOFT01V JOB ,,NOTIFY=FSOFT01,

// CLASS=A,MSGCLASS=X,COND=(5,LT),REGION=0M

//*

//JOBLIB DD DSN=SYS1.SFSYLOAD,DISP=SHR

//***

//* COPYRIGHT (C) 1989-2004, FOUNDATION SOFTWARE, INC. *

//* ALL RIGHTS RESERVED - PROPERTY OF FOUNDATION SOFTWARE, INC. *

//* *

//* 5697-I89 (C) COPYRIGHT IBM CORP 2001, 2002, 2003, 2004. *

//* ALL RIGHTS RESERVED. LICENSED MATERIAL - PROPERTY OF IBM. *

//* USE, DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP. *

//* *

//* REV. 01/20/2004 *

//***

//* JCMUCL1J - COMPILE & LINK PENGIEZT/MU PROGRAM IN ONE STEP *

//***

//STEP010 EXEC PGM=FSYTPA00

//SYSOUT DD SYSOUT=*

//SYSLIST DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//* LINK TO LOADLIB (WHERE YOUR PROGRAM WILL BE LINKED)

//SYSLMOD DD DSN=???????.MUCONV.LOADLIB,

// DISP=SHR

//* ADDITIONAL SYSLIB DSNS CAN BE CODED FOR YOUR OWN INCLUDES.

//SYSLIB DD DSN=SYS1.SFSYLOAD,

// DISP=SHR

//* PANDD MUST POINT TO YOUR OWN EASYTRIEVE PLUS MACROS.

//* CONSULT WITH SYSTEM PROGRAMMER FOR THE CORRECT DDNAME AS

//* IT CAN BE CHANGED AT INSTALLATION TIME. (SEE #EZTPROC).

//* (THIS IS AN OPTIONAL STATEMENT. COMMENT OUT IF NOT NEEDED)

//PANDD DD DSN=???????.MUCONV.EZPLUS.MACROS,

// DISP=SHR

//SYSIN DD DSN=SYS1.SFSYEZTS(MUTEST00),DISP=SHR

/*

//

Figure 9. JCMUCL1J—one step translate and link (no proc)

JCMUCL1J

Appendix. Migration Utility JCL 341

JCMUCL1P—Translate and link (instream proc)

JCMUCL1P can be found in SYS1.SFSYJCLS. It performs a one-step translate and

link using an instream proc.

//FSOFT01V JOB ,,NOTIFY=FSOFT01,

// CLASS=A,MSGCLASS=X,COND=(5,LT),REGION=0M

//*

//JOBLIB DD DSN=SYS1.SFSYLOAD,

// DISP=SHR

// DD DSN=???????.MUCONV.LOADLIB,

// DISP=SHR

//***

//* COPYRIGHT (C) 1989-2004, FOUNDATION SOFTWARE, INC. *

//* ALL RIGHTS RESERVED - PROPERTY OF FOUNDATION SOFTWARE, INC. *

//* *

//* 5697-I89 (C) COPYRIGHT IBM CORP 2001, 2002, 2003, 2004. *

//* ALL RIGHTS RESERVED. LICENSED MATERIAL - PROPERTY OF IBM. *

//* USE, DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP. *

//* *

//* REV. 01/20/2004 *

//***

//* JCMUCL1P - COMPILE & LINK IN ONE STEP (INSTREAM PROC) *

//***

//FSYTPA00 PROC SYSOUT=’*’,

//** FJSYSPH=???????.MUCONV.COBSRC, OPTIONAL GENED COBOL

// SYSLMOD=???????.MUCONV.LOADLIB, LINK TO LOADLIB

// SYSLIB1=SYS1.SFSYLOAD, PENGIEZT/MU LOADLIB

//** FJPROC0=SYS1.SFSYJCLS(#EZTPROC), OPTIONAL PROC

// PANDD=???????.MUCONV.EZPLUS.MACROS, YOUR EZT MACROS

// SYSIN=SYS1.SFSYEZTS, INPUT EZT PROGRAM

// MEMBER=GO

//*---*

//* FSYTPA00 STEP: TRANSLATE, COMPILE AND LINK. *

//*---*

//FSYTPA00 EXEC PGM=FSYTPA00

//**FJPROC0 DD DSN=&FJPROC0,

//** DISP=SHR

//**FJSYSPH DD DSN=&FJSYSPH(&MEMBER),

//** DISP=OLD

//SYSOUT DD SYSOUT=&SYSOUT

//SYSLIST DD SYSOUT=&SYSOUT

//SYSPRINT DD SYSOUT=&SYSOUT

//SYSLMOD DD DSN=&SYSLMOD,

// DISP=SHR

//* ADDITIONAL SYSLIB DSNS CAN BE CODED FOR YOUR OWN INCLUDES.

//SYSLIB DD DSN=&SYSLIB1,

// DISP=SHR

//* PANDD MUST POINT TO YOUR OWN EASYTRIEVE PLUS MACROS.

//* CONSULT WITH SYSTEM PROGRAMMER FOR THE CORRECT DDNAME AS

//* IT CAN BE CHANGED AT INSTALLATION TIME. (SEE #EZTPROC).

//* (THIS IS AN OPTIONAL STATEMENT. COMMENT OUT IF NOT NEEDED)

//PANDD DD DSN=&PANDD,

// DISP=SHR

//SYSIN DD DSN=&SYSIN(&MEMBER),

// DISP=SHR

// PEND

//*

//MUTEST00 EXEC PROC=FSYTPA00,MEMBER=MUTEST00

/*

//

Figure 10. JCMUCL1P—one-step translate and link (instream proc)

JCMUCL1P

342 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

JCMUCL2J—Two-step translate and link without a proc

JCMUCL2J can be found in SYS1.SFSYJCLS. It performs a two-step translate and

link without a proc.

//FSOFT01V JOB ,,NOTIFY=FSOFT01,

// CLASS=A,MSGCLASS=X,COND=(5,LT),REGION=0M

//*

//JOBLIB DD DSN=SYS1.SFSYLOAD,

// DISP=SHR

//***

//* COPYRIGHT (C) 1989-2004, FOUNDATION SOFTWARE, INC. *

//* ALL RIGHTS RESERVED - PROPERTY OF FOUNDATION SOFTWARE, INC. *

//* *

//* 5697-I89 (C) COPYRIGHT IBM CORP 2001, 2002, 2003, 2004. *

//* ALL RIGHTS RESERVED. LICENSED MATERIAL - PROPERTY OF IBM. *

//* USE, DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP. *

//* *

//* REV. 01/20/2004 *

//***

//* JCMUCL2J - COMPILE & LINK PENGIEZT/MU PROGRAM IN TWO STEPS *

//***

//STEP010 EXEC PGM=FSYTPA00

//SYSOUT DD SYSOUT=*

//SYSLIST DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSLIN DD UNIT=VIO,

// DSN=&&LOADSET,

// DISP=(NEW,PASS,DELETE),

// SPACE=(CYL,(3,5),RLSE),

// DCB=(DSORG=PS,RECFM=FB,LRECL=80,BLKSIZE=)

//*

//* PANDD MUST POINT TO YOUR OWN EASYTRIEVE PLUS MACROS.

//* CONSULT WITH SYSTEM PROGRAMMER FOR THE CORRECT DDNAME AS

//* IT CAN BE CHANGED AT INSTALLATION TIME. (SEE #EZTPROC).

//* (THIS IS AN OPTIONAL STATEMENT. COMMENT OUT IF NOT NEEDED)

//PANDD DD DSN=???????.MUCONV.EZPLUS.MACROS,

// DISP=SHR

//SYSIN DD DSN=SYS1.SFSYEZTS(MUTEST00),

// DISP=SHR

//*

//*---*

//* LINK EDIT STEP. CREATES LOAD MODULE IN SYSLMOD. *

//*---*

//LKED EXEC PGM=IEWL,PARM=’LIST,LET,XREF,MAP,AMODE(31),RMODE(24)’

//SYSOUT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE,DELETE)

//* LINK TO LOADLIB (WHERE YOUR PROGRAM WILL BE LINKED)

//SYSLMOD DD DSN=???????.MUCONV.LOADLIB,

// DISP=SHR

//* ADDITIONAL SYSLIB DSNS CAN BE CODED FOR YOUR OWN INCLUDES.

//SYSLIB DD DSN=SYS1.SFSYLOAD,

// DISP=SHR

//SYSUT1 DD UNIT=VIO,SPACE=(CYL,(5,10),RLSE)

/*

//

Figure 11. two-step translate and link (no proc)

JCMUCL2J

Appendix. Migration Utility JCL 343

JCMUCL2P—Two-step translate and link (instream proc)

JCMUCL2P can be found in SYS1.SFSYJCLS. It performs a two-step translate and

link using an instream proc.

//FSOFT01V JOB ,,NOTIFY=FSOFT01,

// CLASS=A,MSGCLASS=X,COND=(5,LT),REGION=0M

//*

//JOBLIB DD DSN=SYS1.SFSYLOAD,

// DISP=SHR

// DD DSN=???????.MUCONV.LOADLIB,

// DISP=SHR

//***

//* COPYRIGHT (C) 1989-2004, FOUNDATION SOFTWARE, INC. *

//* ALL RIGHTS RESERVED - PROPERTY OF FOUNDATION SOFTWARE, INC. *

//* *

//* 5697-I89 (C) COPYRIGHT IBM CORP 2001, 2002, 2003, 2004. *

//* ALL RIGHTS RESERVED. LICENSED MATERIAL - PROPERTY OF IBM. *

//* USE, DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP. *

//* *

//* REV. 01/20/2004 *

//***

//* JCMUCL2P - COMPILE & LINK IN TWO STEPS (THE EZT WAY), INSTREAM PROC

//***

//FSYTPA00 PROC SYSOUT=’*’,

//** FJSYSPH=???????.MUCONV.COBSRC, OPTIONAL GENED COBOL

//** FJPROC0=SYS1.SFSYJCLS(#EZTPROC), OPTIONAL PROC

// SYSLMOD=???????.MUCONV.LOADLIB, LINK TO LOADLIB

// SYSLIB1=SYS1.SFSYLOAD, PENGIEZT/MU LOADLIB

// PANDD=???????.MUCONV.EZPLUS.MACROS, YOUR EZT MACROS

// SYSIN=SYS1.SFSYEZTS, INPUT EZT PROGRAM

// MEMBER=GO

//*---*

//* FSYTPA00 STEP: TRANSLATE, COMPILE AND LINK. *

//*---*

//FSYTPA00 EXEC PGM=FSYTPA00

//**FJPROC0 DD DSN=&FJPROC0,

//** DISP=SHR

//**FJSYSPH DD DSN=&FJSYSPH(&MEMBER),

//** DISP=OLD

//SYSOUT DD SYSOUT=&SYSOUT

//SYSLIST DD SYSOUT=&SYSOUT

//SYSPRINT DD SYSOUT=&SYSOUT

//SYSLIN DD UNIT=VIO,

// DSN=&&LOADSET,

// DISP=(NEW,PASS,DELETE),

// SPACE=(CYL,(3,5),RLSE),

// DCB=(DSORG=PS,RECFM=FB,LRECL=80,BLKSIZE=)

//*

//* PANDD MUST POINT TO YOUR OWN EASYTRIEVE PLUS MACROS.

//* CONSULT WITH SYSTEM PROGRAMMER FOR THE CORRECT DDNAME AS

//* IT CAN BE CHANGED AT INSTALLATION TIME. (SEE #EZTPROC).

//* (THIS IS AN OPTIONAL STATEMENT. COMMENT OUT IF NOT NEEDED)

//PANDD DD DSN=&PANDD,

// DISP=SHR

//SYSIN DD DSN=&SYSIN(&MEMBER),

// DISP=SHR

Figure 12. JCMUCL2P—two-step translate and link (instream proc) (Part 1 of 2)

JCMUCL2P

344 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

//*

//*---*

//* LINK EDIT STEP. CREATES LOAD MODULE IN SYSLMOD. *

//*---*

//LKED EXEC PGM=IEWL,PARM=’LIST,LET,XREF,MAP,AMODE(31),RMODE(24)’

//SYSOUT DD SYSOUT=&SYSOUT

//SYSPRINT DD SYSOUT=&SYSOUT

//SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE,DELETE)

//SYSLMOD DD DSN=&SYSLMOD,

// DISP=SHR

//* ADDITIONAL SYSLIB DSNS CAN BE CODED FOR YOUR OWN INCLUDES.

//SYSLIB DD DSN=&SYSLIB1,

// DISP=SHR

//SYSUT1 DD UNIT=VIO,SPACE=(CYL,(5,10),RLSE)

// PEND

//*

//MUTEST00 EXEC PROC=FSYTPA00,MEMBER=MUTEST00

//

Figure 12. JCMUCL2P—two-step translate and link (instream proc) (Part 2 of 2)

JCMUCL2P

Appendix. Migration Utility JCL 345

JCMUIMSJ—Sample job for translating IMS/DLI programs

JCMUIMSJ can be found in SYS1.SFSYJCLS. It is a sample job for translating

IMS/DLI programs.

//FSOFT01V JOB ,,NOTIFY=FSOFT01,

// CLASS=A,MSGCLASS=X,COND=(5,LT),REGION=0M

//*

//JOBLIB DD DSN=FSOFT01.FSYMG400.LOADLIB,

// DISP=SHR

//***

//* COPYRIGHT (C) 1989-2004, FOUNDATION SOFTWARE, INC. *

//* ALL RIGHTS RESERVED - PROPERTY OF FOUNDATION SOFTWARE, INC. *

//* *

//* 5697-I89 (C) COPYRIGHT IBM CORP 2001, 2002, 2003, 2004. *

//* ALL RIGHTS RESERVED. LICENSED MATERIAL - PROPERTY OF IBM. *

//* USE, DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP. *

//* *

//* REV. 01/26/2004 *

//***

//* JCMUIMSJ - COMPILE, LINK AND EXECUTE IMS/DLI PENGIEZT/MU PROGRAM *

//* (LINK AND GO) *

//***

//*

//FSYTPA00 EXEC PGM=DFSRRC00,REGION=2048K,

// PARM=’DLI,FSYTPA00,&PSBNAME’

//* NOTE: ADDITIONAL SYSLIB DSNS CAN BE CODED FOR YOUR OWN INCLUDES

//SYSLIB DD DSN=FSOFT01.FSYMG400.LOADLIB,

// DISP=SHR

//* PANDD MUST POINT TO YOUR OWN EASYTRIEVE PLUS MACROS.

//* CONSULT WITH SYSTEM PROGRAMMER FOR THE CORRECT DDNAME AS

//* IT CAN BE CHANGED AT INSTALLATION TIME. (SEE #EZTPROC).

//* (THIS IS AN OPTIONAL STATEMENT. COMMENT OUT IF NOT NEEDED)

//PANDD DD DSN=FSOFT01.MUCONV.EZPLUS.MACROS,

// DISP=SHR

//SYSOUT DD SYSOUT=*

//SYSLIST DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//*

//* ADD YOUR OWN JCL FOR ACCESSING DLI, AND WHATEVER FILES YOU MAY NEED

//IMS DD DSN=???????.???????.PSBLIB,DISP=SHR

// DD DSN=???????.???????.DBDLIB,DISP=SHR

//SYSIN DD *

??? ADD YOUR OWN PROGRAM HERE

/*

//

Figure 13. JCMUIMSJ—sample job for translating IMS/DLI programs

JCMUIMSJ

346 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

JCMUSQLJ—Two-step translate, link and bind for SQL

JCMUSQLJ can be found in SYS1.SFSYJCLS. It performs a two-step translate, link

and bind for SQL.

//FSOFT01V JOB ,,NOTIFY=FSOFT01,

// CLASS=A,MSGCLASS=X,COND=(5,LT),REGION=0M

//*

//JOBLIB DD DSN=SYS1.SFSYLOAD,

// DISP=SHR

// DD DSN=DSN710.SDSNEXIT.DBVA,

// DISP=SHR

// DD DSN=DB2.V7R1M0.SDSNLOAD,

// DISP=SHR

//***

//* COPYRIGHT (C) 1989-2004, FOUNDATION SOFTWARE, INC. *

//* ALL RIGHTS RESERVED - PROPERTY OF FOUNDATION SOFTWARE, INC. *

//* *

//* 5697-I89 (C) COPYRIGHT IBM CORP 2001, 2002, 2003, 2004. *

//* ALL RIGHTS RESERVED. LICENSED MATERIAL - PROPERTY OF IBM. *

//* USE, DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP. *

//* *

//* REV. 01/20/2004 *

//***

//* JCMUSQLJ - TRANSLATE, COMPILE, LINK AND BIND PENGIEZT/MU PROGRAMS *

//***

//*

//*---*

//* FSYTPA00 STEP: TRANSLATE, SQLTRAN, COMPILE AND LINK. *

//* "PARM LINK (&PGMNAME)" IS REQUIRED IN EZT PLUS SOURCE. *

//*---*

//FSYTPA00 EXEC PGM=FSYTPA00

//SYSOUT DD SYSOUT=*

//SYSLIST DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//* ADDITIONAL SYSLIB DSNS CAN BE CODED FOR YOUR OWN INCLUDES.

//SYSLIB DD DSN=SYS1.SFSYLOAD,

// DISP=SHR

//* PANDD MUST POINT TO YOUR OWN EASYTRIEVE PLUS MACROS.

//* CONSULT WITH SYSTEM PROGRAMMER FOR THE CORRECT DDNAME AS

//* IT CAN BE CHANGED AT INSTALLATION TIME. (SEE #EZTPROC).

//* (THIS IS AN OPTIONAL STATEMENT. COMMENT OUT IF NOT NEEDED)

//PANDD DD DSN=???????.MUCONV.EZPLUS.MACROS,

// DISP=SHR

//SYSLMOD DD DSN=???????.MUCONV.LOADLIB,

// DISP=SHR

//FJBIND0 DD UNIT=SYSDA,

// DSN=&&FJBIND0,

// SPACE=(TRK,(15,15,)),

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=),

// DISP=(NEW,PASS,DELETE)

//DBRMLIB DD DSN=???????.MUCONV.DBRMLIB(TESTCOL0),

// DISP=SHR

//SYSIN DD DSN=SYS1.SFSYEZTS(TESTCOL0),

// DISP=SHR

Figure 14. JCMUSQLJ—two-step translate, link and bind for SQL (Part 1 of 2)

JCMUSQLJ

Appendix. Migration Utility JCL 347

//*

//*---*

//* BIND COMPILED PROGRAM. *

//* "PARM BIND (STATIC-ONLY)" IS REQUIRED IN EZT PLUS SOURCE. *

//*---*

//BIND EXEC PGM=IKJEFT01,COND=(5,LT,FSYTPA00)

//DBRMLIB DD DSN=???????.MUCONV.DBRMLIB,

// DISP=SHR

//SYSUT1 DD UNIT=SYSDA,

// SPACE=(CYL,(4,5))

//* SYSTSIN CAN BE RE-DIRECTED TO YOUR OWN BIND STATEMENTS

//SYSTSIN DD DSN=&&FJBIND0,

// DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSTSPRT DD SYSOUT=*

//$RUNBYRN DD DUMMY

/*

//

Figure 14. JCMUSQLJ—two-step translate, link and bind for SQL (Part 2 of 2)

JCMUSQLJ

348 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

JCMUSQLP—Two-step translate, link and bind for SQL (using proc)

JCMUSQLP can be found in SYS1.SFSYJCLS. It performs a two-step translate, link

and bind for SQL using a proc.

//FSOFT01V JOB ,,NOTIFY=FSOFT01,

// CLASS=A,MSGCLASS=X,COND=(5,LT),REGION=0M

//*

//JOBLIB DD DSN=SYS1.SFSYLOAD,

// DISP=SHR

// DD DSN=???????.MUCONV.LOADLIB,

// DISP=SHR

// DD DSN=DSN710.SDSNEXIT.DBVA,

// DISP=SHR

// DD DSN=DB2.V7R1M0.SDSNLOAD,

// DISP=SHR

//***

//* COPYRIGHT (C) 1989-2004, FOUNDATION SOFTWARE, INC. *

//* ALL RIGHTS RESERVED - PROPERTY OF FOUNDATION SOFTWARE, INC. *

//* *

//* 5697-I89 (C) COPYRIGHT IBM CORP 2001, 2002, 2003, 2004. *

//* ALL RIGHTS RESERVED. LICENSED MATERIAL - PROPERTY OF IBM. *

//* USE, DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP. *

//* *

//* REV. 01/20/2004 *

//***

//* JCMUSQLP - INSTREAM PROC (CODE EXEC AT THE BOTTOM OF THIS PROC) *

//* *

//* TRANSLATE, COMPILE, LINK AND BIND PENGIEZT/MU PROGRAMS. *

//* "PARM LINK (&PGMNAME)" IS REQUIRED IN EZT PLUS SOURCE. *

//***

//FSPENGI PROC SYSOUT=’*’,

// CWORK=VIO, WORK DASD/UNIT

//** FJSYSPH=???????.MUCONV.COBSRC, OPTIONAL GENED COBOL

// SYSLMOD=???????.MUCONV.LOADLIB, LINK TO LOADLIB

// SYSLIB1=SYS1.SFSYLOAD, PENGIEZT/MU LOADLIB

// SYSLIB2=DSN710.SDSNEXIT.DBVA, DB2 EXIT LIB

// SYSLIB3=DB2.V7R1M0.SDSNLOAD, DB2 LOADLIB

// DBRMLIB=???????.MUCONV.DBRMLIB, DBRMLIB

//** FJPROC0=SYS1.SFSYJCLS(#EZTPROC), OPTIONAL PROC

// PANDD=???????.MUCONV.EZPLUS.MACROS, YOUR EZT MACROS

// SYSIN=SYS1.SFSYEZTS, INPUT EZT PROGRAM

// MEMBER=GO PROGRAM NAME

//*

//*---*

//* FSYTPA00 STEP: TRANSLATE, SQLTRAN, COMPILE AND LINK. *

//*---*

//FSYTPA00 EXEC PGM=FSYTPA00

//**FJPROC0 DD DSN=&FJPROC0,

//** DISP=SHR

//**FJSYSPH DD DSN=&FJSYSPH(&MEMBER),

//** DISP=OLD

//SYSOUT DD SYSOUT=&SYSOUT

//SYSLIST1 DD SYSOUT=&SYSOUT

//SYSPRINT DD SYSOUT=&SYSOUT

//SYSLMOD DD DSN=&SYSLMOD,

// DISP=SHR

Figure 15. JCMUSQLP—two-step translate, link and bind for SQL (using proc) (Part 1 of 2)

JCMUSQLP

Appendix. Migration Utility JCL 349

//* ADDITIONAL SYSLIB DSNS CAN BE CODED FOR YOUR OWN INCLUDES.

//SYSLIB DD DSN=&SYSLIB1,

// DISP=SHR

// DD DSN=&SYSLIB2,

// DISP=SHR

// DD DSN=&SYSLIB3,

// DISP=SHR

//* PANDD MUST POINT TO YOUR OWN EASYTRIEVE PLUS MACROS.

//* CONSULT WITH SYSTEM PROGRAMMER FOR THE CORRECT DDNAME AS

//* IT CAN BE CHANGED AT INSTALLATION TIME. (SEE #EZTPROC).

//* (THIS IS AN OPTIONAL STATEMENT. COMMENT OUT IF NOT NEEDED)

//PANDD DD DSN=&PANDD,

// DISP=SHR

//FJBIND0 DD UNIT=&CWORK,

// DSN=&&FJBIND0,

// SPACE=(TRK,(15,15,)),

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=),

// DISP=(NEW,PASS,DELETE)

//DBRMLIB DD DSN=&DBRMLIB(&MEMBER),

// DISP=OLD

//SYSIN DD DSN=&SYSIN(&MEMBER),

// DISP=SHR

//*

//*---*

//* BIND COMPILED PROGRAM. *

//* "PARM BIND (STATIC-ONLY)" IS REQUIRED IN EZT PLUS SOURCE. *

//*---*

//BIND EXEC PGM=IKJEFT01,COND=(5,LT,FSYTPA00)

//DBRMLIB DD DSN=&DBRMLIB,

// DISP=SHR

//SYSUT1 DD UNIT=&CWORK,

// SPACE=(CYL,(5,10))

//* SYSTSIN CAN BE RE-DIRECTED TO YOUR OWN BIND STATEMENTS

//SYSTSIN DD DSN=&&FJBIND0,

// DISP=SHR

//SYSPRINT DD SYSOUT=&SYSOUT

//SYSTSPRT DD SYSOUT=&SYSOUT

//$RUNBYRN DD DUMMY

// PEND

//*

//TESTCOL0 EXEC PROC=FSPENGI,MEMBER=TESTCOL0

/*

//

Figure 15. JCMUSQLP—two-step translate, link and bind for SQL (using proc) (Part 2 of 2)

JCMUSQLP

350 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

JCMUMIG1—Automated conversion engine

JCMUMIG1 can be found in SYS1.SFSYJCLS. It is Migration Utility’s automated

conversion engine.

//FSOFT01G JOB ,’user name’,

// CLASS=C,

// MSGCLASS=X,

// REGION=0M,

//&NOTIFY NOTIFY=&USERID,

// COND=(256,LT)

//*

//JOBLIB DD DSN=SYS1.SFSYLOAD,

// DISP=SHR

// DD DSN=???????.MUCONV.LOADLIB,

// DISP=SHR

//***

//* COPYRIGHT (C) 1989-2004, FOUNDATION SOFTWARE, INC. *

//* ALL RIGHTS RESERVED - PROPERTY OF FOUNDATION SOFTWARE, INC. *

//* *

//* 5697-I89 (C) COPYRIGHT IBM CORP 2001, 2002, 2003, 2004. *

//* ALL RIGHTS RESERVED. LICENSED MATERIAL - PROPERTY OF IBM. *

//* USE, DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP. *

//* *

//* REV. 01/20/2004 *

//***

//* JCMUMIG1 - CONVERSION (COMPILE & LINK - VIA AN INSTREAM PROC) *

//* USAGE: AUTOMATED CONVERSION OF DB2 AND NON-DB2 PROGRAMS*

//* *

//* /======> REFER TO JCMUMIG2 JCL FOR THE MANUAL CONVERSION PROCESS. *

//*---*

//* /=> THIS JOB IS INITIATED VIA THE JCMUCNV1 JOB FOR MASS CONVERSION*

//* OF EASYTRIEVE PLUS PROGRAMS TO COBOL. *

//* *

//* /=> THE "JCMUCNV1" READS A TABLE OF PROGRAMS TO BE TRANSLATED, *

//* PLUS THIS JCL, AND INITIATES THE AUTOMATED CONVERSION ENGINE. *

//* *

//* /=> THE "JCMUCNV1" WAS SUPPLIED WITH THE PRODUCT. IT CAN BE *

//* LOCATED IN THE SAME LIBRARY WHERE THIS JCL RESIDES/RESIDED. *

//* *

//* /=> THIS INSTREAM "FSPENGI" PROC TRANSLATES THE SUPPLIED &MEMBER *

//* PROGRAM AS PER #CNVPROC PENGIEZT/MU CONVERSION PROC. *

//* *

//* /=> THE INSTREAM "CONVPD1" LOCATED AT THE BOTTOM OF THIS JOB, *

//* RE-INITIATES THIS PROGRAM WITH THE NEXT MEMBER NAME LOCATED *

//* IN THE PROGRAM TABLE. *

//* *

//* /=> THIS PROCESS STAYS IN A LOOP UNTIL ALL PROGRAMS ARE TRANSLATED.

//* *

//* /=> YOU CAN STOP THIS PROCESS BY RE-DIRECTING THE RDRFILE *

//* IN //STEP010, TO AN OUTPUT OTHER THAN THE INTERNAL READER. *

//* --- OR --- *

//* YOU CAN INSERT A $END STATEMENT INTO YOUR PROGRAM TABLE, *

//* AFTER A PROGRAM NAME THAT HAS NOT BEEN TRANSLATED YET. *

//***

Figure 16. JCMUMIG1—automated conversion engine with self-restart (Part 1 of 5)

JCMUMIG1

Appendix. Migration Utility JCL 351

//*

//FSPENGI PROC SYSOUT=’*’,

// CWORK=VIO,

//*---*

//* FJPROC0 POINTS TO THE PENGIEZT/MU CONVERSION PROC *

//* #CNVPROC PROC WAS SUPPLIED WITH THE PROGRAM PRODUCT. *

//*---*

// FJPROC0=SYS1.SFSYJCLS(#CNVPROC),

//*

//*---*

//* FJERLOG IS A CUMULATIVE LOG OF PROGRAMS THAT FAILED TO TRANSLATE *

//* THIS MUST BE A PRE-ALLOCATED SEQUENTIAL FILE (LRECL=80,RECFM=FB) *

//*---*

// FJERLOG=???????.MUCONV.ERRORS,

//*

//*---*

//* EASYTRIEVE FILES INFORMATION IS PUNCHED INTO THIS PDS *

//* THIS MUST BE A PRE-ALLOCATED PDS FILE (LRECL=80,RECFM=FB) *

//* THIS FILE IS NEEDED BY THE PARALLEL TEST (FSYMIG10) PROGRAM. *

//*---*

// FJSYSP0=???????.MUCONV.FJSYSP0,

//*

//*---*

//* PDS INTO WHICH THE GENERATED COBOL IS SAVED *

//*---*

// FJSYSPH=???????.MUCONV.COBSRC,

//*

//*---*

//* SQL (DB2) DBRMLIB *

//* MUST BE REPLACED BY YOUR OWN LIBRARIES *

//* (COMMENT OUT IF NOT USING DB2/SQL) *

//*---*

// DBRMLIB=???????.MUCONV.DBRMLIB,

//*

//*---*

//* THE TARGET LOAD LIBRARY FOR LKED STEP. *

//* TRANSLATED PROGRAMS ARE LINKED INTO THIS LOADLIB. *

//*---*

// SYSLMOD=???????.MUCONV.LOADLIB,

//*

//*---*

//* LINK TO BOOTSTRAP LIBRARY (BOOT STRAPS ARE LINKED INTO THIS LIB) *

//*---*

// BOOTMOD=???????.MUCONV.BOOTSTRP.LOADLIB,

//*

//*---*

//* SYSLIB THAT CONTAINS SUBMODULES CALLED BY EASYTRIEVE PROGRAMS. *

//* /==> THE SYSLIB IN THIS JCL IS CONCATENATED TO THE SYSLIB IN *

//* THE LKED STEP OF #CNVPROC. *

//* *

//* /==> YOU CAN INCLUDE ONE OR MORE LIBRARIES THAT CONTAIN MODULES *

//* NEEDED TO RESOLVE EXTERNAL CALLS, INCLUDING DB2 LIBRARIES, *

//* IF YOU ARE CONVERTING DB2 PROGRAMS. *

//*---*

// SYSLIB=???????.MUCONV.LOADLIB,

//*

//*---*

//* PANDD MUST POINT TO YOUR OWN EASYTRIEVE PLUS MACROS. *

//* *

//* PANDD CAN BE CHANGED AT INSTALLATION TIME. (SEE #CNVPROC). *

//* (THIS IS AN OPTIONAL STATEMENT. COMMENT OUT IF NOT NEEDED) *

//*---*

// PANDD=???????.MUCONV.EZPLUS.MACROS,

Figure 16. JCMUMIG1—automated conversion engine with self-restart (Part 2 of 5)

JCMUMIG1

352 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

//*

//*---*

//* SYSIN MUST POINT TO PDS WHERE YOUR EASYTRIEVE PLUS PROGRAMS ARE *

//*---*

// SYSIN=SYS1.SFSYEZTS,

//*

//*---*

// MEMBER=GO PROGRAM NAME

//*

//*---*

//* PENGIEZT/MU RUN PROCEDURE *

//*---*

//FSYTPA00 EXEC PGM=FSYTPA00

//STEPLIB DD DSN=SYS1.SFSYLOAD,

// DISP=SHR

//* DB2 LIBRARIES BELOW CAN BE REMOVED IF DB2 IS NOT USED

// DD DSN=DSN710.SDSNEXIT.DBVA,

// DISP=SHR

// DD DSN=DB2.V7R1M0.SDSNLOAD,

// DISP=SHR

//SYSOUT DD SYSOUT=&SYSOUT

//SYSLIST DD SYSOUT=&SYSOUT

//SYSPRINT DD SYSOUT=&SYSOUT

//FJPROC0 DD DSN=&FJPROC0,

// DISP=SHR

//FJERLOG DD DSN=&FJERLOG,

// DISP=MOD

//FJSYSPH DD DSN=&FJSYSPH(&MEMBER),

// DISP=OLD

//FJSYSP0 DD DSN=&FJSYSP0(&MEMBER),

// DISP=OLD

//DBRMLIB DD DSN=&DBRMLIB(&MEMBER),

// DISP=OLD

//FJBOOT0 DD DSN=&BOOTMOD,

// DISP=SHR

//SYSLMOD DD DSN=&SYSLMOD,

// DISP=SHR

//SYSLIB DD DSN=&SYSLIB,

// DISP=SHR

//PANDD DD DSN=&PANDD,

// DISP=SHR

//SYSIN DD DSN=&SYSIN(&MEMBER),

// DISP=SHR

//FJBIND0 DD UNIT=&CWORK,

// DSN=&&FJBIND0,

// SPACE=(TRK,(15,15,)),

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=),

// DISP=(NEW,PASS,DELETE)

Figure 16. JCMUMIG1—automated conversion engine with self-restart (Part 3 of 5)

JCMUMIG1

Appendix. Migration Utility JCL 353

//*

//*---*

//* BIND COMPILED PROGRAM (SQL/DB2) PROGRAMS ONLY. *

//* *

//* /=> THIS STEP IS REQUESTED BY FSYTPA00, VIA RC=2, WHEN INPUT *

//* PROGRAM CONTAINS SQL/DB2 STATEMENTS. *

//* *

//* "PARM BIND (STATIC-ONLY)" IS REQUIRED IN EZT PLUS SOURCE. *

//*---*

// IF (FSYTPA00.RUN=TRUE AND FSYTPA00.RC = 2) THEN

//BIND EXEC PGM=IKJEFT01

//DBRMLIB DD DSN=&DBRMLIB,

// DISP=SHR

//SYSUT1 DD UNIT=&CWORK,

// SPACE=(CYL,(5,10))

//* SYSTSIN CAN BE RE-DIRECTED TO YOUR OWN BIND STATEMENTS

//SYSTSIN DD DSN=&&FJBIND0,

// DISP=SHR

//SYSPRINT DD SYSOUT=&SYSOUT

//SYSTSPRT DD SYSOUT=&SYSOUT

//$RUNBYRN DD DUMMY

// ENDIF

//*

// IF (BIND.RUN=TRUE AND BIND.RC > 0) THEN

//BINDER EXEC PGM=FSYCNV02,

// REGION=4096K,PARM=(BIND,&MEMBER)

//SYSOUT DD SYSOUT=&SYSOUT

//FJSYABE DD SYSOUT=&SYSOUT

//REPORT1 DD SYSOUT=&SYSOUT

//SYSLIST DD SYSOUT=&SYSOUT

//FJERLOG DD DSN=&FJERLOG,

// DISP=MOD

// ENDIF

// PEND

//*

//***

//* FSYCNV01 - PROCEDURE TO INITIATE A NEW JOB *

//***

//CONVPD1 PROC SYSOUT=’*’,

//*

//*---*

//* PDS AND MEMBER NAME OF PROGRAM NAMES TO BE CONVERTED. *

//* LEAVE THIS ENTRY AS IS. FSYCNV01 PROGRAM REPLACES THIS LINE *

//* BY THE DIRLIST FILE DURING THE INITIATION (JCMUCNV1) JOB. *

//*---*

//&DIRLST DIRLIST=, .FSYCNV01 PROGRAM INSERTS IT

//*

//*---*

//* PDS THAT CONTAINS THIS (JCMUMIG1) JOB. *

//*---*

// FILEIN=SYS1.SFSYJCLS,

//*---*

// CWORK=VIO, .WORK FILES UNIT

// ALLOC=10, .SPACE FOR WORK FILES

// PARAM= .PARM OPTIONS (LEAVE AS IS)

Figure 16. JCMUMIG1—automated conversion engine with self-restart (Part 4 of 5)

JCMUMIG1

354 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

//*

//*---*

//* FSYCNV01 RUN PROCEDURE. *

//*---*

//RESUB EXEC PGM=FSYCNV01,REGION=4096K,COND=EVEN,PARM=(&PARAM)

//SYSOUT DD SYSOUT=&SYSOUT

//FJSYABE DD SYSOUT=&SYSOUT

//SYSLIST DD SYSOUT=&SYSOUT

//REPORT1 DD SYSOUT=&SYSOUT

//SYSPRINT DD SYSOUT=&SYSOUT

//SYSUDUPM DD SYSOUT=&SYSOUT

//SYSABOUT DD SYSOUT=&SYSOUT

//*

//*-------- FILES INPUT TO FSYCNV01 ---------------------------------*

//DIRLIST DD DSN=&DIRLIST,

// DISP=SHR

//FILEIN DD DSN=&FILEIN,

// DISP=SHR

//RDRFILE DD SYSOUT=(*,INTRDR)

//*

//* THIS RDRFILE CAN BE UNCOMMENTED FOR PUNCHING PROC TO SYSOUT

//*RDRFILE DD SYSOUT=&SYSOUT

//*

//*-------- WORK FILES USED IN FSYCNV01 ------------------------------*

//TEMPWK1 DD UNIT=&CWORK,

// DSN=&&TEMPWK1,

// SPACE=(CYL,(&ALLOC,20))

//*

//SORTFL1 DD UNIT=&CWORK,

// DSN=&&SORTFL1,

// SPACE=(CYL,(&ALLOC,20))

//*

//* SORT WORK FILES NEEDED BY THE SORT PROGRAM.

//SORTWK01 DD UNIT=&CWORK,

// SPACE=(CYL,(&ALLOC,20))

//*

//SORTWK02 DD UNIT=&CWORK,

// SPACE=(CYL,(&ALLOC,20))

// PEND

//*

//&MEMBER EXEC FSPENGI,MEMBER=&MEMBER

//&RESTART EXEC PROC=CONVPD1,PARAM=(JCMUMIG1,&RESTART)

//*

//

Figure 16. JCMUMIG1—automated conversion engine with self-restart (Part 5 of 5)

JCMUMIG1

Appendix. Migration Utility JCL 355

JCMUCNV1—Automated conversion initiation job

JCMUCNV1 can be found in SYS1.SFSYJCLS. It initiates the automated conversion

job.

//FSOFT01Y JOB ,,NOTIFY=FSOFT01,

// CLASS=C,MSGCLASS=X,COND=(5,LT)

//*

//JOBLIB DD DSN=SYS1.SFSYLOAD,

// DISP=SHR

// DD DSN=???????.MUCONV.LOADLIB,

// DISP=SHR

//***

//* COPYRIGHT (C) 1989-2004, FOUNDATION SOFTWARE, INC. *

//* ALL RIGHTS RESERVED - PROPERTY OF FOUNDATION SOFTWARE, INC. *

//* *

//* 5697-I89 (C) COPYRIGHT IBM CORP 2001, 2002, 2003, 2004. *

//* ALL RIGHTS RESERVED. LICENSED MATERIAL - PROPERTY OF IBM. *

//* USE, DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP. *

//* *

//* REV. 01/20/2004 *

//***

//* FSYCNV01 - TRANSLATOR CONVERSION INITIATION MODULE (RESTART) *

//* *

//* /=> THIS JOB INITIATES THE AUTOMATED TRANSLATING PROCESS BY *

//* SUBMITTING THE JOB NAME SPECIFIED IN THE PARM=(&JOB,&PROGRAM),*

//* SPECIFIED AT THE BOTTOM OF THIS PROC, INTO INTERNAL READER. *

//* *

//* /=> YOU CAN TEST THIS JOB BY RE-DIRECTING THE RDRFILE IN *

//* //STEP010, TO AN OUTPUT OTHER THAN THE INTERNAL READER. *

//* *

//***

//*

//CONVPD1 PROC SYSOUT=’*’,

//*---*

//* PDS WHERE DIRECTORY TABLE OF PROGRAMS TO BE CONVERTED RESIDES. *

//*---*

// DIRLIST=SYS1.SFSYEZTS,

//* *

//*---*

//* NAME OF THE DIRECTORY TABLE MEMBER. *

//*---*

// DIRMEMB=,

//* *

//*---*

//* PDS WHER JCMUMIG1 JOB/PROC IS LOCATED. *

//*---*

// FILEIN=SYS1.SFSYJCLS,

//* *

//*---*

// WORK=SYSDA, .WORK FILES

// ALLOC=10, .WORK FILES SPACE

// PARAM= .PARM OPTIONS IF ANY

Figure 17. JCMUCNV1—automated conversion initiation job (Part 1 of 2)

JCMUCNV1

356 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

//*

//*---*

//* FSYCNV01 RUN PROCEDURE. *

//*---*

//STEP010 EXEC PGM=FSYCNV01,REGION=4096K,PARM=(&PARAM)

//SYSOUT DD SYSOUT=&SYSOUT

//FJSYABE DD SYSOUT=&SYSOUT

//SYSLIST DD SYSOUT=&SYSOUT

//SYSPRINT DD SYSOUT=&SYSOUT

//SYSUDUPM DD SYSOUT=&SYSOUT

//SYSABOUT DD SYSOUT=&SYSOUT

//*

//*-------- FILES INPUT TO FSYCNV01 ---------------------------------*

//FILEIN DD DSN=&FILEIN,

// DISP=SHR

//DIRLIST DD DSN=&DIRLIST(&DIRMEMB),

// DISP=SHR

//RDRFILE DD SYSOUT=(*,INTRDR)

//*

//* THIS RDRFILE CAN BE UNCOMMENTED FOR PUNCHING PROC TO SYSOUT

//*RDRFILE DD SYSOUT=&SYSOUT

//*

//*-------- WORK FILES USED IN FSYCNV01 ------------------------------*

//TEMPWK1 DD UNIT=&WORK,

// DSN=&&TEMPWK1,

// SPACE=(CYL,(&ALLOC,20))

//*

//SORTFL1 DD UNIT=&WORK,

// DSN=&&SORTFL1,

// SPACE=(CYL,(&ALLOC,20))

//*

//* SORT WORK FILES NEEDED BY THE SORT PROGRAM

//SORTWK01 DD UNIT=&WORK,

// SPACE=(CYL,(&ALLOC,20))

//*

//SORTWK02 DD UNIT=&WORK,

// SPACE=(CYL,(&ALLOC,20))

//*

// PEND

//* NOTE: $ALL IN THE PARAM BELOW INITIATES TRANSLATION OF ALL

//* PROGRAMS LOCATED IN THE DIRMEMB= TABLE (UP TO THE $END).

//* YOU CAN CHANGE $ALL TO A SPECIFIC MEMBER NAME IF DESIRED.

/*

//PENGI000 EXEC PROC=CONVPD1,PARAM=’(JCMUMIG1,$ALL)’,DIRMEMB=#PGMSTAB

/*

//

Figure 17. JCMUCNV1—automated conversion initiation job (Part 2 of 2)

JCMUCNV1

Appendix. Migration Utility JCL 357

JCMUMIG2—Manual conversion engine with no restart

JCMUMIG2 can be found in SYS1.SFSYJCLS. It initiates the manual conversion

engine.

//FSOFT01V JOB ,,NOTIFY=FSOFT01,

// CLASS=A,MSGCLASS=X,REGION=0M

//*

//JOBLIB DD DSN=???????.MUCONV.LOADLIB,

// DISP=SHR

// DD DSN=SYS1.SFSYLOAD,

// DISP=SHR

//***

//* COPYRIGHT (C) 1989-2004, FOUNDATION SOFTWARE, INC. *

//* ALL RIGHTS RESERVED - PROPERTY OF FOUNDATION SOFTWARE, INC. *

//* *

//* 5697-I89 (C) COPYRIGHT IBM CORP 2001, 2002, 2003, 2004. *

//* ALL RIGHTS RESERVED. LICENSED MATERIAL - PROPERTY OF IBM. *

//* USE, DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP. *

//* *

//* REV. 01/20/2004 WRITTEN BY: SRECKO LAZANJA *

//***

//* JCMUMIG2 - CONVERSION (COMPILE & LINK - VIA AN INSTREAM PROC) *

//* USAGE: MANUAL CONVERSION OF DB2 AND NON-DB2 PROGRAMS *

//* (THIS JOB MUST BE SUBMITTED MANUALLY) *

//* *

//* /======> REFER TO JCMUMIG1 JCL FOR AUTOMATED CONVERSION ENGINE. *

//***

//FSPENGI PROC SYSOUT=’*’,

// CWORK=VIO, UNIT/SYSDA

// FJPROC0=SYS1.SFSYJCLS(#CNVPROC), CONVERSION PROC

// FJERLOG=???????.MUCONV.ERRORS, OUTPUT ERROR FILE

// FJSYSP0=???????.MUCONV.FJSYSP0, OUTPUT FILE INFO

// FJSYSPH=???????.MUCONV.COBSRC, OUTPUT COBOL SOURCE

// SYSLMOD=???????.MUCONV.LOADLIB, LINK TO LIBRARY

// BOOTMOD=???????.MUCONV.BOOTSTRP.LOADLIB, LINK TO BOOTSTRP

// DBRMLIB=???????.MUCONV.DBRMLIB, DB2 DBRMLIB

// PANDD=???????.MUCONV.EZPLUS.MACROS, YOUR EZT MACROS

// SYSLIB=???????.MUCONV.LOADLIB, OWN INCLUDES

// SYSIN=SYS1.SFSYEZTS, INPUT EASYTRIEVE

// MEMBER=GO PROGRAM NAME

//*---*

//* FSYTPA00 RUN PROCEDURE *

//*---*

//FSYTPA00 EXEC PGM=FSYTPA00

//STEPLIB DD DSN=SYS1.SFSYLOAD,

// DISP=SHR

//* DB2 LIBRARIES BELOW CAN BE REMOVED IF DB2 IS NOT USED

// DD DSN=DSN710.SDSNEXIT.DBVA,

// DISP=SHR

// DD DSN=DB2.V7R1M0.SDSNLOAD,

// DISP=SHR

//SYSOUT DD SYSOUT=&SYSOUT

//SYSLIST DD SYSOUT=&SYSOUT

//SYSPRINT DD SYSOUT=&SYSOUT

//FJPROC0 DD DSN=&FJPROC0,

// DISP=SHR

//FJERLOG DD DSN=&FJERLOG,

// DISP=MOD

//FJSYSPH DD DSN=&FJSYSPH(&MEMBER),

// DISP=OLD

Figure 18. JCMUMIG2—manual conversion engine (no restart) (Part 1 of 2)

JCMUMIG2

358 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

//FJSYSP0 DD DSN=&FJSYSP0(&MEMBER),

// DISP=OLD

//FJBOOT0 DD DSN=&BOOTMOD(&MEMBER),

// DISP=SHR

//SYSLMOD DD DSN=&SYSLMOD,

// DISP=SHR

//* PANDD MUST POINT TO YOUR OWN EASYTRIEVE PLUS MACROS.

//* CONSULT WITH SYSTEM PROGRAMMER FOR THE CORRECT DDNAME AS

//* IT CAN BE CHANGED AT INSTALLATION TIME. (SEE #EZTPROC).

//* (THIS IS AN OPTIONAL STATEMENT. COMMENT OUT IF NOT NEEDED)

//PANDD DD DSN=&PANDD,

// DISP=SHR

//SYSLIB DD DSN=&SYSLIB,

// DISP=SHR

//* DB2 LIBRARIES BELOW CAN BE REMOVED IF DB2 IS NOT USED

//DBRMLIB DD DSN=&DBRMLIB(&MEMBER),

// DISP=SHR

//SYSIN DD DSN=&SYSIN(&MEMBER),

// DISP=SHR

//FJBIND0 DD UNIT=&CWORK,

// DSN=&&FJBIND0,

// SPACE=(TRK,(15,15,)),

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=),

// DISP=(NEW,PASS,DELETE)

//*

//*---*

//* BIND COMPILED PROGRAM (SQL/DB2) PROGRAMS ONLY. *

//* *

//* /=> THIS STEP IS REQUESTED BY FSYTPA00, VIA RC=2, WHEN INPUT *

//* PROGRAM CONTAINS SQL/DB2 STATEMENTS. *

//* *

//* "PARM BIND (STATIC-ONLY)" IS REQUIRED IN EZT PLUS SOURCE. *

//*---*

// IF (FSYTPA00.RUN=TRUE AND FSYTPA00.RC = 2) THEN

//BIND EXEC PGM=IKJEFT01

//DBRMLIB DD DSN=&DBRMLIB,

// DISP=SHR

//SYSUT1 DD UNIT=&CWORK,

// SPACE=(CYL,(5,10))

//* SYSTSIN CAN BE RE-DIRECTED TO YOUR OWN BIND STATEMENTS

//SYSTSIN DD DSN=&&FJBIND0,

// DISP=SHR

//SYSPRINT DD SYSOUT=&SYSOUT

//SYSTSPRT DD SYSOUT=&SYSOUT

//$RUNBYRN DD DUMMY

// ENDIF

//*

// IF (BIND.RUN=TRUE AND BIND.RC > 0) THEN

//BINDER EXEC PGM=FSYCNV02,

// REGION=4096K,PARM=(BIND,&MEMBER)

//SYSOUT DD SYSOUT=&SYSOUT

//FJSYABE DD SYSOUT=&SYSOUT

//REPORT1 DD SYSOUT=&SYSOUT

//SYSLIST DD SYSOUT=&SYSOUT

//FJERMOG DD DSN=&FJERLOG,

// DISP=MOD

// ENDIF

// PEND

//*

//*IBMDEMO3 EXEC PROC=FSPENGI,MEMBER=IBMDEMO3

//TESTCOL0 EXEC PROC=FSPENGI,MEMBER=TESTCOL0

//

Figure 18. JCMUMIG2—manual conversion engine (no restart) (Part 2 of 2)

JCMUMIG2

Appendix. Migration Utility JCL 359

#FJICNTL—Control file for JCL adjuster program (FSYMIG00)

#FJICNTL can be found in SYS1.SFSYEZTS. It is the control file that contains the

parameters for the JCL adjuster program (FSYMIG00).

* COPYRIGHT (C) 1989-2004, FOUNDATION SOFTWARE, INC. *

* ALL RIGHTS RESERVED - PROPERTY OF FOUNDATION SOFTWARE, INC. *

* *

* 5697-I89 (C) COPYRIGHT IBM CORP 2001 - 2004. *

* ALL RIGHTS RESERVED. LICENSED MATERIAL - PROPERTY OF IBM. *

* USE, DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP. *

* *

* REV. 03/14/2004 WRITTEN BY: SRECKO LAZANJA *

* *

* THIS FILE PROVIDES PARAMETERS FOR BUILDING PARALLEL TEST JCL. *

* *

* USAGE: PENGIEZT/MU FSYMIG00 PROGRAM. *

* SYNTAX CONVENTIONS FOR THIS PARAMETER FILE: *

* *

* A "*" ON POSITION 1 DENOTES A COMMENT. *

* A "//" IN POSITION 1-2 DENOTES AN OPTION (PARAMETER) *

* A BLANK LINE DENOTES THE END OF PARAMETER (OPTION) VALUE *

* ANY OTHER VALUE POST PARAMETER ARE TAKEN AS PARAMETER VALUES *

* *

* HARD CODED SYMBOLS: (REPLACED BY FSYMIG00 PROGRAM) *

* *

* &JOBNAME - JOB NAME FROM FJIJOB0 FILE JOB STATEMENT *

* &JOBACCT - ACCOUNTING INFORMATION FROM FJIJOB0 FILE JOB STATEMENT *

* &JOBUNAM - USER NAME INFORMATION FROM FJIJOB0 FILE JOB STATEMENT *

* &STEPNAM - STEP NAME FROM FJIJOB0 FILE EXEC STATEMENTS *

* &USERID - TSO USER NAME THE JOB WAS SUBMITTED BY *

* *

* FSYMIG00 READS THIS PARAMETER FILE ALONG WITH THE USER SUPPLIED *

* JCL (FROM FJIJOB0) AND POTENTIAL PROCS (FROM FJIPROC) AND CREATES *

* THE FOLLOWING: *

* *

* 1. UPDATED JCL FOR PRODUCTION USE *

* --------------------------------- *

* PUTS UPDATED JCL IN FJOJOB0 AND PROCS IN FJOPROC PDS. CHANGES *

* ARE MADE AS DEFINED IN THIS FILE FOR COMPILED AND LINK&GO *

* EASYTRIEVE JOB STEPS: *

* *

* A) PRODUCT LOAD LIBRARIES *

* - "EZLOAD0" DSN IS REPLACED BY THE "CCL1LIB" LOADLIB *

* /=> THIS CHANGE AFFECTS ALL JCL STATEMENTS, INCLUDING PROC *

* SUBSTITUTION ARGUMENTS. *

* *

* B) APPLICATION LOAD LIBRARIES *

* - "EJLOAD0" DSN IS REPLACED BY THE "FJLOAD0" LOADLIB *

* /=> THIS CHANGE AFFECTS ALL JCL STATEMENTS, INCLUDING PROC *

* SUBSTITUTION ARGUMENTS. *

* *

* C) EASYTRIEVE PLUS PRODUCT MACRO LIBRARIES *

* - EASYTRIEVE PLUS PRODUCT MACRO LIBRARIES ARE REPLACED BY *

* THE PENGIEZT/MU PRODUCT MACRO LIBRARY. *

* /=> THIS CHANGE AFFECTS ALL JCL STATEMENTS, INCLUDING PROC *

* SUBSTITUTION ARGUMENTS. *

* *

Figure 19. #FJICNTL—JCL adjuster program (FSYMIG00) control file (Part 1 of 8)

#FJICNTL control file

360 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

* D) EXEC PGN=EZTPA00 IS CHANGED TO EXEC PGM=FSYTPA00 *

* EXEC PGN=EZTPA00X IS CHANGED TO EXEC PGM=FSYTPA00 *

* *

* E) DLI/IMS STEPS ARE ASSUMED TO BE THE "EXEC PGM=DFSRRC00" *

* /=> PARM=(DLI,EZTPA00..) IS CHANGED TO PARM=(DLI,FSYTPA00...) *

* (FOR LINK AND GO JOBS) *

* /=> COMPILED PROGRAM NAMES ARE NOT CHANGED AS THEY ARE *

* FETCHED FROM APPLICATION LOADLIB USING THE SAME NAME. *

* *

* 2. UPDATED JCL FOR PARALLEL TEST *

* -------------------------------- *

* PUTS UPDATED JCL IN FJOJOB0. ALL PROCS ARE PUNCHED AS INSTREAM *

* PROCS, INCLUDING THE EXTERNAL PROCS. CHANGES ARE MADE AS DEFINED *

* IN THIS FILE FOR COMPILED AND LINK&GO EASYTRIEVE PLUS JOB STEPS *

* AS FOLLOWS: *

* *

* NOTE: LINK&GO PROGRAMS ARE TRANSLATED IN FLIGHT TO OBTAIN OUTPUT *

* FILE ATTRIBUTES VIA FJSYSP0 PENGIEZT/MU FSCCL1 STEP. *

* *

* A) A NEW JOB STEP IS CREATED BEFORE THE ORIGINAL JOB STEP FOR *

* PENGIEZT/MU RUN AND MASSAGED AS FOLLOWS: *

* *

* PRODUCT LOAD LIBRARIES *

* - "EZLOAD0" DSN IS REPLACED BY THE "CCL1LIB" LOADLIB *

* /=> THIS CHANGE AFFECTS ALL JCL STATEMENTS, INCLUDING PROC *

* SUBSTITUTION ARGUMENTS. *

* *

* APPLICATION LOAD LIBRARIES *

* - "EJLOAD0" DSN IS REPLACED BY THE "FJLOAD0" LOADLIB *

* /=> THIS CHANGE AFFECTS ALL JCL STATEMENTS, INCLUDING PROC *

* SUBSTITUTION ARGUMENTS. *

* *

* EASYTRIEVE PLUS PRODUCT MACRO LIBRARIES *

* - EASYTRIEVE PLUS PRODUCT MACRO LIBRARIES ARE REPLACED BY *

* THE PENGIEZT/MU PRODUCT MACRO LIBRARY. *

* /=> THIS CHANGE AFFECTS ALL JCL STATEMENTS, INCLUDING PROC *

* SUBSTITUTION ARGUMENTS. *

* *

* EXEC PGN=EZTPA00 IS CHANGED TO EXEC PGM=FSYMIG05 *

* EXEC PGN=EZTPA00X IS CHANGED TO EXEC PGM=FSYMIG05 *

* /=> COMPILED PROGRAM NAMES ARE NOT CHANGED AS THEY ARE *

* FETCHED FROM THE BOOTSTRP LOADLIB USING THE SAME NAME. *

* *

* DLI/IMS STEPS ARE ASSUMED TO BE "EXEC PGM=DFSRRC00" *

* /=> PARM=(DLI,EZTPA00..) IS CHANGED TO PARM=(DLI,FSYMIG05...) *

* (FOR LINK AND GO JOBS) *

* /=> COMPILED PROGRAM NAMES ARE NOT CHANGED AS THEY ARE *

* FETCHED FROM THE BOOTSTRP LOADLIB USING THE SAME NAME. *

* *

* JOBLIB - NEW JCL STATEMENTS ARE ADDED TO THE JOBLIB: *

* - BOOTSTRP LIBRARY IS ADDED TO THE JOBLIB UNCONDITIONALLY *

* /=> BOOTSTRAP IS CONCATENATED FIRST IN CHAIN. *

* - CCL1LIB LIBRARY IS ADDED TO THE JOBLIB UNCONDITIONALLY *

* /=> CCL1LIB IS CONCATENATED SECOND IN CHAIN. *

* *

* STEPLIB - NEW JCL STATEMENTS ARE ADDED TO THE STEPLIB OF EACH *

* JOB STEP THAT EXECUTES A COMPILED EASYTRIEVE PLUS PROGRAM. *

* /=> BOOTSTRAP IS CONCATENATED FIRST IN CHAIN. *

* /=> CCL1LIB IS CONCATENATED SECOND IN CHAIN. *

* *

Figure 19. #FJICNTL—JCL adjuster program (FSYMIG00) control file (Part 2 of 8)

#FJICNTL control file

Appendix. Migration Utility JCL 361

* COMPILED AND LINK&GO EASYTRIEVE STEPS: *

* /=> FJLOAD0 DD STATEMENTS ARE CREATED *

* *

* B) THE ORIGINAL JOB STEP IS MASSAGED AS FOLLOWS: *

* *

* JOBLIB (IF IT EXISTS) IS CONCATENATED TO THE STEPLIB. *

* /=> STEPLIB IS CREATED IF ONE DOES NOT EXIST. *

* *

* JCL STATEMENTS FOR OUTPUT DATA SETS ARE DISCARDED AND NEW JCL *

* WITH DATA SET NAMES ARE GENERATED. *

* *

* C) A JOB STEP FOR PARALLEL TEST COMPARE IS ADDED. *

* *

* D) IEFBR14 STEP TO INITIALIZE PURGE JCL FILE IS ADDED BEFORE THE *

* FIRST JOB STEP. SEE "//INITIAL-STEP" OPTION IN THIS FILE. *

* *

* E) A VSAM REPRO/IDCAMS STEP IS ADDED BEFORE EACH EASYTRIEVE *

* PLUS STEP, COMPILED OR LINK &GO, FOR VSAM FILES THAT ARE *

* UPDATED IN PLACE (OPENED IN I-O MODE). THIS STEP IS ADDED *

* IF THE INPUT VSAM FILE OPENED IN I-O MODE IS NOT CREATED *

* BY THE SAME STEP. *

------------ FSYMIG00 PROGRAM OPTIONS FOLLOW ------------------------

* //PROD-COMPILERS *

* //TEST-COMPILERS *

* EASYTRIEVE PLUS AND PENGIEZT/MU COMPILER PROGRAM NAMES FOR *

* PRODUCTION AND PARALLEL TEST (PARM=PROD OR PARM=TEST). *

* *

* &EZNAME=&MUNAME *

* WHERE: &EZNAME = EASYTRIEVE PLUS COMPILER PROGRAM *

* &MUNAME = CONVERT TO PENGIEZT/MU COMPILER PROGRAM *

* *

* /=> SOME DATA CENTERS USE MORE THAN ONE EASYTRIEVE PLUS COMPILER *

* PROGRAM. EQUATE ALL NAMES TO FSYTPA00 BELOW FOR PRODUCTION, AND *

* FSYMIG05 FOR PARALLEL TEST. *

* *

* USAGE: LINK & GO (PARALLEL TEST AND PRODUCTION) *

* PRODUCTION COMPILERS TO BE USED

//PROD-COMPILERS

EZTPA00=FSYTPA00

EZTPA00X=FSYTPA00

* PARALLEL TEST COMPILERS TO BE USED.

//TEST-COMPILERS

EZTPA00=FSYMIG05

EZTPA00X=FSYMIG05

FSYTPA00=FSYMIG05

Figure 19. #FJICNTL—JCL adjuster program (FSYMIG00) control file (Part 3 of 8)

#FJICNTL control file

362 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

* //INITIAL-STEP *

* FSYMIG00 PROGRAM INSERTS THIS INITIAL IEFBR14 JOB STEP BEFORE THE *

* FIRST JOB STEP. *

* *

* USAGE: AUTOMATED COMPARE OF PARALLEL TEST FILES. *

* COMPILED PROGRAMS *

* LINK & GO PROGRAMS *

* *

* /=> THE PURPOSE OF THIS STEP IS TO CLEAR THE FILE INTO WHICH OUTPUT *

* FILES PURGE JOB IS PLACED BY THE COMPARE PROGRAM. *

//INITIAL-STEP

//*<>------------------ IEFBR14 INITIAL STEP -------------------------*

* KEEP THE IEF#BR14 AS WRITTEN BELOW.

//IEF#BR14 EXEC PGM=IEFBR14

* THIS DSN MUST BE THE SAME AS FOR FJPURGE IN THE COMPARE-STEP BELOW.

//FJPURGE DD UNIT=SYSDA,

// SPACE=(TRK,(1,1),RLSE),

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=),

// DISP=(MOD,DELETE,DELETE),

// DSN=FSOFT01.MUCONV.PURGJCL.&JOBNAME

//*

* //COMPARE-STEP *

* COMPARE STEP JCL TO BE EXECUTED FOR COMPARING EASYTRIEVE PLUS *

* VS PENGIEZT/MU OUTPUT APPLICATION FILES. *

* *

* USAGE: AUTOMATED COMPARE OF PARALLEL TEST FILES. *

* COMPILED PROGRAMS *

* LINK & GO PROGRAMS *

* *

* /=> CODE JCL STATEMENTS FOR YOUR COMPARE PROGRAM, STARTING WITH *

* "//&STEPNAM EXEC PGM=FSYMIG20,COND=EVEN," *

* " PARM=(&P1,&P2,&P3,&P4,&P5,&P6)" *

* *

* WHERE: &P1 = FILE PURGE OPTION *

* PURGE FILES ARE PURGED AFTER COMPARE. PURGE *

* IS ACTIVATED FOR GOOD COMPARES ONLY. *

* KEEP FILES ARE KEPT (EVEN IF GOOD COMPARE) *

* &P2 = CONDITION CODE OPTION *

* NOLET RETURN ERROR CODE *

* LET RETURN RC=00 EVEN IF COMPARE ERRORS EXIST *

* &P3 = USER EXIT PROGRAM. CODE 1-8 CHARS PROGRAM NAME. *

* THE DEFAULT IS NOEXIT. *

* &P4 = COMPARE MODE FOR PRINTER FILES *

* BYTE COMPARES BYTE BY BYTE *

* WORD COMPARES WORD BY WORD SEPARATED BY SPACES *

* &P5 = PRINTER FILES CC HANDLING OPTION *

* EXPCC REPLICATES LINES ACCORDING TO CONTROL CHAR.*

* NOEXPCC COMPARES LINE BY LINE AS FOUND ON INPUT FILE

* &P6 = COMPARE ERROR LIMIT. THE DEFAULT IS 64. *

* COMPARE TERMINATES WHEN THIS LIMIT IS REACHED *

* &P7 = JOB STATEMENT ACCOUNTING INFORMATION FOR PURGE JCL *

* MUST BE ENCLOSED IN QUOTES, EX: ’(1234,N0000000)’ *

* THE "&JOBACCT" IS REPLACED BY FSYMIG00 WITH THE *

* ACCOUNTING INFORMATION FOUND IN THE INPUT FJIJOB0 *

* FILE. &P7 IS AN OPTIONAL PARAMETER. *

Figure 19. #FJICNTL—JCL adjuster program (FSYMIG00) control file (Part 4 of 8)

#FJICNTL control file

Appendix. Migration Utility JCL 363

* &P8 = JOB STATEMENT USER NAME FOR PURGE JCL. *

* MUST BE ENCLOSED IN QUOTES, EX: ’JOHN-SMITH’ *

* THE "&JOBUNAM" IS REPLACED BY FSYMIG00 WITH THE *

* USER NAME INFORMATION FOUND IN THE INPUT FJIJOB0 *

* FILE. &P8 IS AN OPTIONAL PARAMETER. *

* *

* SAMPLE EXIT "FSYXIT00" IS DISTRIBUTED WITH THE PRODUCT. THE SOURCE *

* IS LOCATED IN SYS1.EZTSRC. *

* /=> YOU CAN MAKE A COPY OF FSYXIT00 AND CUSTOMIZE IT TO YOUR NEEDS. *

* IN THAT CASE, CHANGE NOEXIT IN THE PARM BELOW TO YOUR PROGRAM NAME. *

* *

//COMPARE-STEP

//*<>------------------ FILE COMPARE STEP ----------------------------*

* KEEP THE &STEPNAM AS WRITTEN BELOW. CHANGE COND= AND PARM= AS NEEDED.

//&STEPNAM EXEC PGM=FSYMIG20,COND=EVEN,

// PARM=(PURGE,NOLET,NOEXIT,BYTE,EXPCC,64, X

// ’&JOBACCT’, X

// ’&JOBUNAM’)

//SYSOUT DD SYSOUT=*

//SYSLIST DD SYSOUT=*

//HEXLIST DD SYSOUT=*

//* NOTE: ERROR LOGS ARE DYNAMICALLY ALLOCATED BY FSYMIG00 PROGRAM

//* ----- AT RUN TIME. THE FILE NAMES IN ERROR ARE USED AS DDNAMES.

//*

//* COMPARE PROGRAM PUTS SUMMARY STATISTICS INTO THIS FILE

//FJSTATS DD UNIT=SYSDA,

// SPACE=(CYL,(5,20),RLSE),

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=),

// DISP=(MOD,CATLG,CATLG),

// DSN=FSOFT01.MUCONV.PARALLEL.FJSTATS

//*

//* TEMPORARY WORK FILE FOR PURGE JCL. DO NOT REMOVE.

//FJPURGW DD UNIT=SYSDA,

// SPACE=(CYL,(1,2),RLSE),

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=),

// DISP=(NEW,PASS,DELETE),

// DSN=&&FJPURGW

//*

//* COMPARE PROGRAM PUTS DELETE JCL INTO THIS FILE FOR DELETING

//* TEMPORARY FILES CREATED BY EASYTRIEVE PLUS AND PENGIEZT/MU STEPS.

* NOTE: &JOBNAME IS REPLACED BY THE JOBNAME OF FSYMIG00 PROGRAM.

//FJPURGE DD UNIT=SYSDA,

// SPACE=(CYL,(1,2),RLSE),

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=),

// DISP=(MOD,CATLG,CATLG),

// DSN=FSOFT01.MUCONV.PURGJCL.&JOBNAME

//*

//* WORK FILE OF TEMPORARY DATA SET NAMES CREATED BY PENGIEZT/MU AND

//* EASYTRIEVE PLUS STEPS. DATA SET NAMES TO BE COMPARED ARE OBTAINED

//* FROM THIS FILE. (LEAVE THIS STATEMENT AS IS).

//FJCOMP0 DD DSN=&&FJCOMP0,

// DISP=(SHR,DELETE,DELETE)

//*

//*-------------------- END OF COMPARE STEP --------------------------*

//*

Figure 19. #FJICNTL—JCL adjuster program (FSYMIG00) control file (Part 5 of 8)

#FJICNTL control file

364 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

* //FJIBOOT *

* DSN WHERE CONVERTED PROGRAMS BOOT STRAPS RESIDE, NORMALLY CREATED *

* WITH JCMUMIG1 OND JCMUMIG2 CONVERSION ENGINES. *

* *

* USED TO INITIATE PARALLEL RUN FOR COMPILED PROGRAMS. *

* *

* /=> MULTIPLE LIBRARIES CAN BE LISTED *

* *

* USAGE: COMPILED PROGRAMS (PARALLEL TEST ONLY) *

//FJIBOOT

FSOFT01.MUCONV.BOOTSTRP.LOADLIB

* //FJLOAD0 *

* DSN WHERE CONVERTED PROGRAMS COBOL MODULES RESIDE. *

* *

* USAGE: COMPILED PROGRAMS (PARALLEL TEST AND PRODUCTION) *

* *

* /=> MULTIPLE LIBRARIES CAN BE LISTED *

//FJLOAD0

FSOFT01.MUCONV.LOADLIB

* //EJLOAD0 *

* DSN WHERE EASYTRIEVE PLUS COMPILED APPLICATION PROGRAMS RESIDE. *

* *

* USAGE: COMPILED PROGRAMS (PARALLEL TEST) *

* *

* /=> MULTIPLE LIBRARIES CAN BE LISTED *

//EJLOAD0

*FSOFT01.FSYMG400.EJLOAD.LOADLIB

FSOFT01.FSYMG400.EZLOAD.LOADLIB

* //CCL1LIB *

* TRANSLATOR LOAD LIBRARY (PENGIEZT/MU LOAD LIBRARY) *

* *

* USAGE: COMPILED PROGRAMS (PARALLEL TEST AND PRODUCTION) *

* LINK & GO (PARALLEL TEST AND PRODUCTION) *

* *

* /=> MULTIPLE LIBRARIES CAN BE LISTED *

//CCL1LIB

FSOFT01.FSYMG400.LOADLIB

CEE.SCEERUN

Figure 19. #FJICNTL—JCL adjuster program (FSYMIG00) control file (Part 6 of 8)

#FJICNTL control file

Appendix. Migration Utility JCL 365

* //EZLOAD0 *

* EASYTRIEVE PLUS LOAD LIBRARY (EASYTRIEVE PLUS PRODUCT LIBRARY) *

* *

* USAGE: COMPILED PROGRAMS (PARALLEL TEST ONLY) *

* LINK & GO (PARALLEL TEST ONLY) *

* *

* /=> MULTIPLE LIBRARIES CAN BE LISTED *

* *

* /=> THESE DSN’S ARE REPLACED BY THE 1ST CCL1LIB (CODED ABOVE) *

//EZLOAD0

FSOFT01.FSYMG400.EZLOAD.LOADLIB

* //FJYMIG0 *

* DSN WHERE TRANSLATOR GENERATED FJSYSP0 MEMBERS ARE LOCATED. *

* *

* USAGE: COMPILED PROGRAMS (PARALLEL TEST ONLY) *

* *

* /=> THIS DSN MUST BE A PDS. FJSYSP0 IS NORMALLY PUNCHED BY THE *

* TRANSLATOR DURING THE TRANSLATING PROCESS. *

* *

* /=> THE MEMBER NAME IS EXTRACTED FROM EACH JOB STEP BY FSYMIG00 *

* PROGRAM AND ADDED TO THIS PDS TO MAKE IT: *

* "//FJYMIG0 DD DSN=&DSNAME(&MEMBER),DISP=SHR" *

* *

* /=> ONLY ONE PDS CAN BE SPECIFIED *

//FJYMIG0

FSOFT01.MUCONV.FJSYSP0

* //REMOVE-MACLIB *

* EASYTRIEVE PLUS PRODUCT MACRO LIBRARY(S) TO BE REMOVED FROM JCL. *

* *

* THESE ARE TOOLKIT AND SPECIAL MACROS THAT CAME WITH EASYTRIEVE *

* PLUS PRODUCT (!! TOOLKIT MACLIB). *

* *

* /=> MULTIPLE LIBRARIES CAN BE LISTED. LIST ENDS WITH 1ST BLANK LINE.*

* /=> DSNS LISTED HERE ARE REPLACED BY MU’S &SYS1.SFSYCCLM LIBRARY. *

//REMOVE-MACLIB

*SYS1.EZTV62.MACLIB

FSOFT01.EZTPLUS.PANDD2.MACROS

* //SPACE *

* SPACE TO BE ALLOCATED TO OUTPUT FILES FOR PARALLEL TESTING. *

* *

* THE SPACE STATEMENT CODED HERE IS USED FOR PRINTER AND THE OUTPUT *

* FILES THAT DO NOT HAVE THE SPACE PARAMETER CODED IN THE JCL. *

//SPACE

SPACE=(CYL,(50,200),RLSE)

Figure 19. #FJICNTL—JCL adjuster program (FSYMIG00) control file (Part 7 of 8)

#FJICNTL control file

366 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

* //MODEL *

* *

* THE 1ST TWO QUALIFIERS TO BE USED FOR OUTPUT DATA SET NAMES. *

* *

* /=> THE OUTPUT DATA SET NAMES ARE GENERATED AS FOLLOWS: *

* DSN=&MODEL.&JOBID.&STEPNAME.&DDNAME.&QUAL *

* *

* WHERE: &MODEL = THE MODEL YOU SUPPLY HERE *

* &JOBID = THE JOB NAME AS FOUND ON THE JOB STATEMENT *

* &STEPNAME = THE JOB STEP NAME AS FOUND IN THE JCL *

* &DDNAME = THE FILE DDNAME *

* &QUAL = ’F01’ FOR PENGIEZT/MU CREATED FILES *

* ’E01’ FOR EASYTRIEVE PLUS CREATED FILES *

* *

* /=> THE TOTAL STRING LENGTH OF &MODEL CANNOT EXCEED 13 CHARACTERS. *

* /=> &USERID IS REPLACED BY THE TSO USER ID. *

* /=> YOU CAN HARD CODE A HIGH QUALIFIER INSTEAD. *

//MODEL

* PLEASE NOTE: THE MODEL CANNOT EXCEED 13 CHARACTERS IN LENGTH.

* FSOFT01.TEMP

&USERID.TEMP

----------------------- END OF PARAMETERS ---------------------------

Figure 19. #FJICNTL—JCL adjuster program (FSYMIG00) control file (Part 8 of 8)

#FJICNTL control file

Appendix. Migration Utility JCL 367

#FJICNTL control file

368 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

 IBM Director of Licensing

 IBM Corporation

 North Castle Drive

 Armonk, NY 10504-1785

 U.S.A.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

 IBM Corporation

 Mail Station P300

 522 South Road

 Poughkeepsie New York 12601-5400

 U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

 IBM World Trade Asia Corporation

 Licensing

 2-31 Roppongi 3-chome, Minato-ku

 Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law: INTERNATIONAL

BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR

© Copyright IBM Corp. 2002, 2005 369

PURPOSE. Some states do not allow disclaimer of express or implied warranties in

certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks

The following are trademarks of International Business Machines Corporation in

the United States, or other countries, or both:

 CICS

DB2

IBM

IMS

MVS

MVS/ESA

MVS/XA

OS/390

S/390

SQL/DS

z/OS

Other company, product, and service names may be trademarks or service marks

of others.

Notices

370 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Index

Special characters
$B1, default CSS template 141, 143, 147

$B2, default CSS template 147

$CP, default CSS template 141, 143, 147

$EM, default CSS template 147

$LN, default CSS template 141, 143

$TB, default CSS template 141, 143, 148

$TD, default CSS template 141, 143, 148

$TH, default CSS template 141, 143, 148

$TR, default CSS template 141, 143, 148

%COBOL statement, embedding COBOL

code 96

%END statement, terminating embedded

COBOL code 96

%PUNCH 175

&FILE:KEY 86

#CNVPROC file 19

#FJICNTL control file 360

production and test environments 24

tailoring 19

A
ABEND keyword 195

ACROSS
number of labels printed across

page 90

Activity Section 130

ADD WRITE option 67

ADJUST installation option 193

AFTER-BREAK report exit 96

AFTER-LINE report line exit 95

ALL numeric display field method 199

ALL print control method 89

ALTSEQ translator option keyword 195

ambiguous field position 28

appending to reserved words 196

arguments, from a single parsed

string 199

ASA file attribute 41

ASC sort order for SQL SELECT

statement 123

ASSIGN statement, support for COBOL

and PEngi functions 100

assigning hex values 29

assignment statement 60

attributes
drill down reports 146

parameter for a report 143

AUTOGEN option, printer files 202

automated parallel testing utility 18

create conversion environment 19

dynamic allocation option 24

JCL conversion rules 20

preparing jobs for 19

restrictions 22

running 22

automatic
retrieval without a file 116

SQL cursor management 109

automatic retrieval without a file 109

B
background color, field attribute 146

BAL supplied modules 180

binary fields
handling 29

maximum value 52

BIND
parameters 110

SQL/DB2 bind option 203

binding 110

bit testing in IF statement 79

blank line option (NEWPAGE

keyword) 201

block size 48

bootstrap load library 24

bracketed expression
maximum string size 200

BREAK report field 86

BREAK-LEVEL report field 86

BUFNO file attribute 41

BUFSIZE COPTION parameter 183

BWZ keyword 51

C
CAF (Call Attachment Facility)

description 188

CAFOWNR translator option

keyword 195

CAFPLAN translator option

keyword 195

CAFSSID translator option keyword 195

Call Attachment Facility (CAF)
CAFSSID translator option

keyword 195

default DB2 table creator/owner 195

default plan name 195

description 188

CALL statement 73

calling subprograms 30

CARD file organization 41

CASE statements 76

CBLCNVRT macro 175

CCL1 preprocessor options 183

CFACTOR translator option

keyword 196

character separated value
See CSV

CHECKPOINT parameter 129

CHKP (symbolic checkpoint) 131

CHKP-STATUS
DLI statement 131

keyword 84

CLOSE
SQL statement 117

statement 119

closing a file 119

COBOL
compatibility 30

compiler 206

COPY generated 197

copybook option 196

copybooks bad character

replacement 196

generating COPY statements 178

II/S390 compatibility 30

job step 6

keyword 196

native support 96

preventing compiler errors 196

selecting type of COBOL 196

stand-alone 39

static 39

status codes 33

subroutines 30

supplied modules 180

syntax rules 44

COBOLCOPY option 177

COBVERBS translator option

keyword 196

COMMIT SQL statement 117

communication area 114

compatibility check 25

conditional expressions 78

CONNECT SQL statement 117

CONTROL statement
considerations 144

description 91

controlled statements 116

COPTION parameters 183

COPY statement 53

COPYBOOK keyword 180

copybook names
maximum number 201

copybook option 196

COPYBOOK translator option

keyword 196, 197

COPYCHAR translator option

keyword 196

COPYNTAB option 180

COPYNTAB translator option

keyword 197

COPYVERB translator option

keyword 197

COPYWRAP translator option

keyword 197

CSS templates, default 147

CSV
files and reports 137

HTML document type parameter 142

insert character 141

CURRENCY translator option

keyword 197

D
data types, SQL 114

© Copyright IBM Corp. 2002, 2005 371

database
checkpoint/restart 129

segments 127

sweep examples 133

database sweep example 134

date threshold 204

DATEABE translator option

keyword 197

DB2
BIND option 203

default system (SQLSSID

keyword) 203

specifying system for Call Attachment

Facility (CAFSSID keyword) 195

DBCS character support 25

DBD macros 125

DBSCODE file attribute 41

DDFNAME translator option

keyword 197

ddnames
drill down documents 149

index/links validator program 149

naming considerations 38

report files 149

summary 182

DEBUG
keyword 198

switch 10

decimal point defined 198

DECIMAL translator option

keyword 198

DECLARE SQL statement 117

DECLGEN translator option

keyword 198

default options, REPORT 192

defining
drill down documents 140

drill down reports 141

field attributes 145

records 50

sequential files 47

tables 44

unit record devices 47

VSAM files 42

working storage 50

DELETE
SQL statement 117

statement 119

WRITE option 67

deleting a row 119

DESC sort order for SQL SELECT

statement 123

device 47

DFSRRC00 DLI program driver 126

DISK file organization 41

DISPLAY statement 71

displaying paragraph names 10

DLI
file organization 41

FOR ACCESS statement 133

IMS support 125

statement 134

support
driver program 126

restart 132

DLI statement 125

application I/O calls 130

DLI statement (continued)
basic checkpoint 131

Extended Restart (XRST) 132

symbolic checkpoint (CHKP) 131

DO statements 76

DOCTYPE keyword, HTML document

type 142

DOWHILE translator option

keyword 198

DOWN, number of print lines for

label 90

drill down
document parser (fsyjpars),

running 152

document, HTMLFL1 154

document, HTMLFL2 154

documents
ddname for 149

defining 140

UNIX environment 165

JCL requirements 148

reports
defining 141

JCMUDRL1 program 154

UNIX 165

utility for UNIX files, JCYUNIX0 152

DTLCOPY
minor level total report detail 89

DTLCOPYALL, detail level information

on control breaks 89

DTLCTL, printing method of control

fields on detail lines 89

duplicate fields usage 37

DUPLICATE test 59

DYNALLOC
keyword 199

option 149

DYNAM
COBOL compile option 181

I/O mode option 200

dynamic allocation
DYNALLOC parameter 199

TBMEMORY parameter 204

WRKSPACE parameter 205

DYNINIT translator option

keyword 199

E
EASYTRAN options 144

Easytrieve
file defined as an SQL file 109

macros 103

program
statement order 3

structure 2

punctuation rules 3

status codes 33

Easytrieve Plus
instream programs 24

SQL files 114

ELSE statements 77

embedding
COBOL code 96

options in source 205

END-CASE statements 76

END-DO statements 76

END-IF statements 77

END-PROC statements 82

ENDCOL translator option keyword 199

EOF processing, SQL 114

ERRLIMT COPTION parameter 183

error messages, ddname for 150

errors, COB2 step 11

ETBROWS translator option

keyword 199

EVEN keyword 51

EXTENDED file attribute 41

extended printer support 27

Extended Restart (XRST) 132

external tables
default number of rows 199

record length 34

EZPARAMS options 144

EZTCNVRT macro 177

EZTCOB proc 9

EZTLKG proc 9

EZTPA00 program loader 192

FSYTPA00 program 5

F
F file record format 41

FB file record format 41

FETCH
SQL statement 117

statement 120

field
attributes, defining 145

headings 30

naming conventions 28

reset option (RESET keyword) 202

fields
group fields for SQL/DBS usage 35

Index and OCCURS 28

maximum number
definitions 199

on report 202

Report Heading 199

SQL fields 203

Title fields in a report 199

OCCURS fields for SQL/DB2

usage 36

overflow tag option for report

totals 202

overlapping on report lines 35

packed unsigned 37

prefix for SQL files 203

processing SQL nullable 113

reducing names to 16 characters 204

replacing ambiguous names 205

sign for numeric 30, 199

SQL
Communication Area 114

system-defined 114

storing reduced length names 197

system-defined 84

translate table for special characters in

names 201

warn of duplicates 205

FIELDS translator option keyword 199

file
attributes

non-supported 41

372 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

file (continued)
attributes (continued)

supported 41

automatic SQL retrieval without a

file 116

closing SQL 119

existence test 59

opening an SQL file 122

organizations
non-supported 41

supported 25, 41

processing, synchronized 56

records, initializing 200

FILE statement 125, 127

FILE-STATUS codes 33

FILE-STATUS translation 200

files
defining 41

Easytrieve Plus SQL 114

generating copy statements 196

I/O error 200

I/O mode 200

maximum number of supported 199

FILES translator option keyword 199

FIRST-DUP test 59

fixed date threshold 204

fixed-length records 25

FJBIND0 system file 182

FJCCLLB system file 182

FJCONFG 150

FJCPYLB system file 182

FJDMAP0 151

FJEDOC0 150

FJIBOOT load library 24

FJICNTL
See #FJICNTL control file

FJIDOC0 library 148

FJIJOB0 input PDS 24

FJIPROC input PROCS library 24

FJMACLB system file 182

FJNAMES system file 182

FJOJOB0 tailored jobs PDS 24

FJOPROC tailored PROCS PDS 24

FJPURGE 23

FJSTATS statistics file 23

FJSYABE abend listing 11, 25

FJSYS01 system file 182

FJSYSER translator error file 182

FJSYSIN system file 182

FJSYSJC system file 182

FJSYSP0 system file 182

FJSYSPH system file 182

FJSYSPW system file 182

FJTEMP0 temporary file 24

FJUNIX0 150, 151

FJWDOC0 149

font
decoration, field attribute 146

defaults 147

family, field attribute 146

style, field attribute 146

weight, field attribute 146

FONT# keyword 51

FOR ACCESS statement 126

format notation
description viii

FREQUENCY, database checkpoint 129

FSCCL1 job step 5

FSCCL2 job step 6

FSCCOBOL program 183

FSIGN translator option keyword 199

FSYCNV20 compare program 18

FSYCNV50 discovery utility 13, 18

input files 15

output files 15

run-time options 14

FSYCNV55 analysis utility 18

input and output files 16

FSYFONTS table
assigning meaning to attributes 146

tailoring 151

fsyjpars.class JAVA utility 137, 138, 140,

149, 152

FSYMIG00 JCL Adjuster utility 18

conversion rules 20

required files 24

FSYMIG05 step initiator 18

FSYMIG10 one-step driver program 18

FSYMIG20 compare program driver 18

FSYTPA00 program 5, 186

activating 187

FSYUNIX0 152

FSYUNIX1 150

FSYXIT00 compare program user exit 18

tailoring 23

G
generating

COBOL COPY statements 178, 197

copy statements 196

SQL INCLUDE information 198

unique I/O error return code 200

GET statement 68

GOTO statement 74

group fields for SQL/DB2 usage 35

H
HEADERS translator option

keyword 199

HEADING
attributes 144

statement 93

heading literal
maximum length 93

HEX keyword 51

HFIELDS translator option keyword 199

HFS 149, 150, 152, 165

HIAR print control method 89

HTML
creating files 137

document type 142

drill down reports 138

HTMLFL1 drill down document 154,

165

HTMLFL2 drill down document 154,

165

I
I/O operation

on WRITE statement 67

IDMS files 25, 41

IF statements 77

in synchronization 59

maximum indentation 200

maximum number of arguments 200

maximum number of nested 201

IMS/DLI support 125

INARGS translator option keyword 199

INCLUDE facility 113

INDENT translator option keyword 199

index
cross-reference file 149

entries, maximum number for

OCCURS 199

file, sort ddname 150

usage 27

INDEXED file organization 41

INDEXS translator option keyword 199

initialization option (DYNINIT

keyword) 199

initializing file records 200

INLINE option, DO WHILE

paragraphs 199

input
arguments, from a single parsed

string 199

PDS (FJIJOB0) 24

PROCS library (FJIPROC) 24

source, end column 199

insert character, CSV reports 141

INSERT SQL statement 117

INSERT statement 122

inserting a row 122

installing
Migration Utility 185

procedures 9

invoking macros 105

IO PCB 125

IOCODE translator option keyword 200

IOERC translator option keyword 200

IOMODE translator option keyword 200

IS file organization 41

J
JAVA

fsyjpars.class utility 137, 138, 140,

149, 152

VM 152

JCASMFON, job 152

JCEIND00 proc 9

JCEZC390 proc 9

JCEZCOB1 proc 8

JCEZCOB2 proc 8

JCEZCOB3 proc 9

JCEZCOB4 proc 9

JCEZDB2A proc 9

JCEZDB2B proc 9

JCEZDB2R proc 9

JCEZE390 proc 9

JCEZG390 proc 9

JCEZL390 proc 9

JCL Adjuster utility 18

required files 24

JCL for converted program 34

JCMUCL1J sample job 6, 341

JCMUCL1P sample job 6, 342

Index 373

JCMUCL2J sample job 6, 343

JCMUCL2P sample job 6, 344

JCMUCLGJ sample job 6, 339

JCMUCLGP sample job 6, 340

JCMUCNV1 automated conversion

initiator 19, 20

JCMUCNV1 sample job 7, 356

JCMUDRL1 154

JCMUDRL1 (job) 137, 140

JCMUDRL2 (job) 137, 138, 161

JCMUDRLU (job) 137, 165

JCMUIMSJ sample job 7, 346

JCMUMIG1 automated conversion

engine 19, 20

sample job 7, 351

JCMUMIG2 manual conversion proc 19,

20

sample job 7, 358

JCMUSQLJ sample job 7, 347

JCMUSQLP sample job 7, 349

JCYCNV50 discovery utility 18

JCYCNV55 analysis utility 18

JCYMIG00 JCL Adjuster program 19

JCYUNIX0 152

JOB Activity Section 55

K
KEYFILE parameter 128

keywords, reserved 87

L
LABELS

mailing label printing 90

labels inside a DO and IF pair of

statements 33

LAST-DUP test 59

LEVEL report field 86

Library Section for SQL processing 112

license inquiry 369

LINE statement 94

LINE-COUNT report field 86

LINE-NUMBER report field 86

LINES COPTION parameter 183

LINES translator option keyword 200

Linkage Section 24

LINKID keyword, PREV and NEXT

buttons 142

LIST COPTION parameter 183

listing Easytrieve macros 197

LKED job step 6

LKGO job step 6

LookAt message retrieval tool viii

LS-RECORD parameter 24

LS-REQUEST-LIST parameter 24

M
macros

Easytrieve 103

invoking 105

maximum number of nests 200

maximum number of supported

parameters 201

mask identifier table 194

MASK option, REPORT statement 137,

142

MATCHED IF test 59

math operations, precision option

(CFACTOR keyword) 196

MAXARG translator option

keyword 200

MAXINDENT translator option

keyword 200

MAXPROC translator option

keyword 200

MAXSTR translator option keyword 200

MEMINIT translator option

keyword 200

message retrieval tool, LookAt viii

Migration Utility
files 180

installing 185

run-time library 24

translator options 194

MINUS, field attribute 146

MNESTS translator option keyword 200

MOVE LIKE statement 66

move method (MOVERPT keyword) 201

MOVE statement 32, 62

MOVENUM translator option

keyword 200

MOVERPT translator option

keyword 201

MPARMS translator option

keyword 201

N
NAMETAB translator option

keyword 201

native
COBOL support 96

SQL processing 109, 117

NCOPIES translator option

keyword 201

NEGATIVE, field attribute 146

NESTS translator option keyword 201

NEWPAGE
keyword 201

label top line force 90

NO
link identifier option 142

numeric display field method 199

NOADJUST installation option 193

NODYNAM COBOL compile

option 181

NODYNAM I/O mode option 200

non-supported
file attributes 41

file organizations 41

non-VSAM variable-length records 26

NONE print control method 89

NOREFRESH option, synchronized file

records 203

notation, description viii

NOVALIDATE, REPORT statement

parameter 140

numeric fields
rules for moving 200

sign 30

O
OBJECTS translator option keyword 201

objects, maximum number for

COBOLBAS 201

OCCURS
fields for SQL/DB2 usage 36

maximum number of index

entries 199

OCCURS1
keyword 201

problem, solution 37

One-Step driver program (FSYTPA00) 5,

186

OPEN SQL statement 117

opening a file 122

options, embedding in source 205

OTHERWISE statements 76

output files 21

OVERFLOW translator option

keyword 202

overlapping fields on report lines 35

P
packed unsigned fields 37

PAGE-COUNT report field 86

PAGESIZE, REPORT statement

parameter 143

paragraph naming conventions 30

parallel testing
automated process 18

conversion utilities 5

dynamic allocation option 24

manual process 17

restrictions 22

running 22

parameter file 24

PARM statement parameters 110

PDS file organization 41

PERFORM
option, DO WHILE paragraphs 199

statement 70

performance, report sequence 144

PGMNAME SQL/DB2 BIND option 203

POINT statement 69

precision option for high-order math

operations (CFACTOR keyword) 196

PRINT statement 82

PRINTER
EZPARAMS/EASYTRAN option 144

file organization 41

keyword 202

PROC
paragraphs 200

statements 82

procedures
installing 9

PROCESS options 206

processing SQL nullable fields 113

procs
described 8

program
loader, EZTPA00 192

maximum number of copy book

names 201

374 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Program Communication Block

(PCB) 125

Program Specification Block (PSB) 125

programs, embedding options in 205

PSB macro 125

PUNCH file organization 41

PUT
SQL statement 117

statement 66

R
railroad track format, how to read viii

READ statement 68

record
format 47

length 47

length, optimizing for temporary

files 202

record availability
during synchronization 57

RECORD statement 127

records
defining 50

fixed-length 25

non-VSAM 26

variable-length 26

VSAM 26

reducing field names to 16

characters 204

REFRESH option, synchronized file

records 203

RELATIVE file organization 41

replacing
ambiguous field names 205

bad characters 196

hard-coded layout 197

REPORT
default options 192

SEQUENCE, performance issues 144

statement 88

statement, default ddname for printer

files 202

statement, parameters 143

report exits 95

Report Heading
maximum number of fields 199

reports
maximum number of fields 202

maximum number of report

lines 200

maximum number of Title fields 199

REPRO step 21

reserved
keywords 87

words, appending to 196

RESET keyword 51

RESET translator option keyword 202

RETAIN file attribute 41

RETRIEVE statement 83, 125, 128, 133

Return Code 200

RFIELDS translator option keyword 202

ROLLBACK SQL statement 117

rolling date threshold 204

rows
deleting from SQL file 119

fetching from SQL file 120

rows (continued)
inserting into SQL file 122

updating an SQL file 122

run-time
requirements 181

statistics 23

S
SBCS character support 25

SEARCH statement 70

segment
database 127

search identifier 129

SELECT statement 129

SELECT statement 83, 122

SEP keyword, insert character for CSV

reports 141

SEQUENCE statement 91

SEQUENTIAL file organization 41

sequential files, defining 47

SET CURRENT SQLID statement 117

setting the currency sign 197

SFSYDOCS 141, 143, 145, 147, 148, 152

SFSYEZTS 146, 151

SFSYJCL 154, 162, 165

SFSYJCLS 137, 138, 140, 152

SFSYLOAD 152

sign of numeric fields 30

SORT Activity Section 54

sort work files, optimizing record

length 202

SORTIN 150

SPACE, REPORT statement

parameter 143

special characters, translate table for field

names 201

SPOOLOPT translator option

keyword 202

spreadsheet
creating files 137

SQL
automatic

cursor management 109

retrieval without a file 116

BIND option 203

catalog INCLUDE facility 113

CLOSE statement 119

closing a file 119

Communication Area fields 114

controlled statements 116

cursor, automatic management 109

data types 114

DELETE statement 119

deleting a row 119

Easytrieve Plus files 114

EOF processing 114

FETCH statement 120

fetching a row 120

file field prefix 203

file organization 41

INCLUDE
generation 198

statement 120

INSERT statement 122

inserting a row 122

Library Section for processing 112

SQL (continued)
maximum number of fields 203

multiple tables 116

native statements supported 117

opening a file 122

SELECT statement 122

statements
converting programs

containing 11

syntax rules 109

syntax checking 114

system-defined fields 114

UPDATE statement 122

updating a row 122

using DEFER with SELECT 115

SQL/DB2
default program run mode (SQLBIND

keyword) 202

group fields 35

OCCURS fields 36

support 107

SQLBIND
keyword 202

macro 110

SQLCA 114

SQLFLDS translator option

keyword 203

SQLMODE translator option

keyword 203

SQLPFIX translator option keyword 203

SQLSSID translator option keyword 203

SQLTRAN job step 6

SSA parameter 129

SSMODE translator option keyword 203

stacked items ix

stand-alone COBOL 39

standard procs 8

static COBOL 39

STATUS codes 33

STDERR 151

STDOUT 151

STOP statement 75

storage utilization, making more

efficient 202

storing reduced length field names 197

string length, maximum in a heading 30

structure of Easytrieve programs 2

subroutines, compatibility with other

COBOL dialects 30

subscript usage option 203

SUM statement 92

SUMCTL, printing method of control

fields on total lines 89

SUMCTL, REPORT statement

parameter 143

SUMMARY
print summary report 89

REPORT statement parameter 143

supported
file attributes 41

file organizations 41

sequential file record formats 41

symbolic
checkpoint (CHKP) 131

SYSIN values 14

synchronized file processing 56

Index 375

SYNCREC translator option

keyword 203

syntax
checking, SQL 114

notation, description viii

rules
COBOL 44

SQL statements 109

SYS1.SFSYLOAD contents 180

SYSIN system file 182

SYSLIST system file 182

SYSOUT
files 20

keyword 204

system information 180

system-defined fields 84

T
TABLE

file organization 41

HTML document type parameter 142

tables
defining 44

dynamic allocation 204

multiple SQL 116

TAG
annotates totals 89

TALLY report field 87

TAPE file organization 41

TBMEMORY translator option

keyword 204

templates, parameter for a report 143

temporary files, optimizing record

length 202

text
align, field attribute 147

color, field attribute 146

TEXT, HTML document type

parameter 142

THRESMOD translator option

keyword 204

Title fields, maximum number 199

TITLE statement 93

TITLESKIP, REPORT statement

parameter 143

TRANSLATE FIELDS translator option

keyword 205

translate table, for special characters in

field names 201

TRANSLATE WORDS translator option

keyword 204

translating
concepts 107

guidelines 8

translator
error file, FJSYSER 182

option, keywords
ALTSEQ 195

CAFOWNR 195

CAFPLAN 195

CAFSSID 195

CFACTOR 196

COBOL 196

COBVERBS 196

COPYBOOK 196

COPYCHAR 196

translator (continued)
option, keywords (continued)

COPYNTAB 197

COPYVERB 197

COPYWRAP 197

CURRENCY 197

DATEABE 197

DDFNAME 197

DEBUG 198

DECIMAL 198

DECLGEN 198

DOWHILE 198

DYNALLOC 199

DYNINIT 199

ENDCOL 199

ETBROWS 199

FIELDS 199

FILES 199

FSIGN 199

HEADERS 199

HFIELDS 199

INARGS 199

INDENT 199

INDEXS 199

IOCODE 200

IOERC 200

IOMODE 200

LINES 200

MAXARG 200

MAXINDENT 200

MAXPROC 200

MAXSTR 200

MEMINIT 200

MNESTS 200

MOVENUM 200

MOVERPT 201

MPARMS 201

NAMETAB 201

NCOPIES 201

NESTS 201

NEWPAGE 201

OCCURS1 201

OVERFLOW 202

PRINTER 202

RESET 202

RFIELDS 202

SPOOLOPT 202

SQLBIND 202

SQLFLDS 203

SQLMODE 203

SQLPFIX 203

SQLSSID 203

SSMODE 203

SYNCREC 203

SYSOUT 204

TBMEMORY 204

THRESMOD 204

TRANSLATE FIELDS 205

TRANSLATE WORDS 204

USERXIT 205

WARNDUP 205

WRKSPACE 205

U
U file record format 41

unavailable field reference 38

undetected errors 30

uninitialized Working Storage fields 32

unit record devices, defining 47

UNIX 137, 138, 149, 150, 165

UPDATE statement 117, 122

UPDATE WRITE option 67

updating a row 122

user exits
description 173

refreshing synchronized file

records 203

USERMASK 194

USERXIT translator option keyword 205

using DEFER with SELECT 115

USRDSN1 table 14

V
V file record format 41

VALIDATE, REPORT statement

parameter 140

VARYING keyword 52

varying-length fields 31

VB file record format 41

VBS file record format 41

VIRTUAL file organization 27, 41

VS COBOL, compatibility 30

VSAM
files

defining 42

mixed I/O mode 38

key usage 27

output files 21

variable-length records 26

VSAM-SEQ file organization 41

VSE issues 39

W
WARNDUP translator option

keyword 205

WHEN
statements 76

wizard 144

WORKAREA file attribute 41

working storage
defining 50

fields, uninitialized 32

WRITE statement 67

WRKSPACE translator option

keyword 205

WS-PENGI-DATE-9 87

WS-PENGI-DATE-LONG-9 87

X
XRST (Extended Restart) 132

Y
year, threshold 204

YES numeric display field method 199

376 Migration Utility for z/OS and OS/390 V2R1 User’s Guide and Reference

Readers’ Comments — We’d Like to Hear from You

IBM Migration Utility for z/OS and OS/390

User’s Guide and Reference

Version 2 Release 1

 Publication No. SC31-8961-01

 Overall, how satisfied are you with the information in this book?

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall satisfaction h h h h h

 How satisfied are you that the information in this book is:

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

 Please tell us how we can improve this book:

 Thank you for your responses. May we contact you? h Yes h No

 When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you.

 Name

Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
 SC31-8961-01

SC31-8961-01

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

H150/090

555 Bailey Avenue

San Jose, CA 95141-9989

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5697–I89

Printed in USA

SC31-8961-01

	Contents
	About this manual
	Who should use this manual
	Structure of this manual
	Using LookAt to look up message explanations
	Syntax notation

	Summary of changes
	PTFs UK00656 and UQ93850

	Chapter 1. Introducing Migration Utility
	What is supported
	Translating concepts
	Structure of Easytrieve programs
	Order of statements in an Easytrieve program

	Review of the Easytrieve punctuation rules

	Chapter 2. Using Migration Utility
	Using the one-step translating driver
	Using Migration Utility with your existing Easytrieve Plus jobs
	Using Migration Utility for new programs
	Controlling Translator listings and messages
	Overriding ddnames in your JCL
	Using JCL with multiple steps

	Chapter 3. Conversion guidelines
	Using the FSYCNV50 (JCYCNV50) utility
	FSYCNV50 run-time options
	Input files
	Output files

	Using the FSYCNV55 (JCYCNV55) utility
	Input files
	Output files

	Using FSYMIG20 (JCYMIG20) stand-alone compare utility
	Input files
	Output files

	A brief review of the manual Parallel Testing process
	The Automated Parallel Testing utility
	Provided utility programs
	Preparing Jobs for the Automated Parallel Testing utility
	Create Parallel Testing/Conversion Environment
	Run Easytrieve Plus programs through Migration Utility
	Prepare JCL/JOBs to run all steps for the comparison.
	Rules observed when preparing your job for parallel testing
	Parallel testing restrictions
	Running the Parallel Test
	Tailoring FSYXIT00 compare exit program
	Preparing JCL for Production use
	FSYMIG00 (JCYMIG00) required files
	Dynamic Allocation option

	Compatibility check
	File organization support
	SBCS and DBCS character support
	Fixed-length records
	NON-VSAM variable-length records
	VSAM variable-length records
	VSAM key usage
	VIRTUAL files
	Extended printer support
	Index usage
	Field naming conventions
	Ambiguous field position; fields with Index and OCCURS
	Binary field handling
	Assigning hex values
	Field headings
	Paragraph-naming conventions
	Supporting VS COBOL and other incompatible COBOL subroutines
	Calling subprograms
	Undetected errors
	Sign of numeric fields
	Varying-length fields
	Uninitialized Working Storage fields
	The MOVE statement
	FILE-STATUS (STATUS) codes
	Labels inside a DO and IF pair of statements
	External table record length
	JCL for converted program
	Overlapping fields on report lines
	Group fields for SQL/DB2 usage
	OCCURS fields for SQL/DB2 usage
	Packed unsigned fields
	Solution for OCCURS 1 problem
	Duplicate fields usage and reference
	Duplicate fields usage
	Unavailable Field reference

	File ddname considerations
	VSAM files, mixed I/O mode
	VSE operating system issues
	Generating standalone COBOL
	Incompatible field masks

	Chapter 4. Defining entities
	Defining files
	Supported file organizations
	Supported sequential file record formats
	Non-supported file organizations
	Non-supported file attributes (these attributes are bypassed)
	Supported file attributes

	Defining VSAM files
	Defining tables
	Defining unit record devices and sequential files
	Defining Records and Working Storage

	Chapter 5. Program instruction reference
	COPY statement
	SORT Activity Section
	JOB Activity Section
	Synchronized file processing
	Record availability
	Special IF statements in synchronized process
	MATCHED
	File existence
	DUPLICATE, FIRST-DUP, LAST-DUP

	Assignment statement
	MOVE statement
	MOVE LIKE statement
	PUT statement
	WRITE statement
	GET statement
	READ statement
	POINT statement
	SEARCH statement
	PERFORM statement
	DISPLAY statement
	CALL statement
	GOTO statement
	STOP statement
	CASE, WHEN, OTHERWISE and END-CASE statements
	DO and END-DO statements
	IF, ELSE, and END-IF statements
	Conditional expressions
	PRINT statement
	PROC and END-PROC statements
	RETRIEVE statement
	SELECT statement (SORT and REPORT selection)
	System-defined fields
	Easytrieve reserved keywords
	REPORT statement
	SEQUENCE statement
	CONTROL statement
	SUM statement
	HEADING statement
	TITLE statement
	LINE statement
	Report exits

	Native COBOL support
	Support for COBOL and PEngi Functions in ASSIGN statement
	Generating rules
	INSPECT VREPLACING statement

	Easytrieve macros
	Invoking macros

	Chapter 6. SQL/DB2 support
	Translating concepts
	Example: DECLGEN of a DB2 table

	Native SQL statements
	Automatic cursor management
	Easytrieve file defined as an SQL file
	Automatic retrieval without a file

	SQL statements syntax rules
	PARM statement parameters
	Running SQL programs in STATIC mode
	Running SQL programs in Dynamic mode
	General concepts
	How does it work in a Migration Utility environment?
	Available options supplied by EASYTRAN/EZPARAMS
	Translating DB2/SQL programs to run in Dynamic SQL mode
	Dynamic SQL translator and run-time errors

	Library Section for SQL processing
	SQL catalog INCLUDE facility
	When to use SQL INCLUDE

	Processing nullable fields
	SQL data types
	SQL syntax checking
	System-defined fields
	EOF processing
	Communication Area fields
	Easytrieve Plus SQL files
	Using DEFER with SELECT
	Multiple tables
	Controlled processing
	Automatic retrieval without a file
	Native SQL processing

	Chapter 7. SQL File I/O statement reference
	CLOSE statement
	DELETE statement
	FETCH statement
	SQL INCLUDE statement
	INSERT statement
	UPDATE statement
	SELECT statement

	Chapter 8. DLI/IMS support
	IMS/DLI concepts
	Translating DLI/IMS programs
	Summary of supported features
	Summary of unsupported features

	FILE definition
	Parameters
	Example

	RECORD definition
	Parameters
	Example

	RETRIEVE statement
	DLI statement
	Format-1: DLI application I/O calls
	Parameters

	Format-2: Basic checkpoint
	Parameters

	Format-3: Symbolic checkpoint
	Parameters

	Format-4: Extended restart
	Parameters
	Restarting your program

	DLI FOR ACCESS statement
	Format-1
	Parameters

	DLI program examples
	Example 1—Sweep of database using RETRIEVE statements
	Example 2—Sweep of database using controlled DLI statements

	Chapter 9. Creating HTML and spreadsheet files
	Character Separated Value (CSV) files and reports
	HTML Drill Down reports
	Concepts

	Defining Drill Down documents
	Defining Drill Down Reports
	Insert character for CSV reports
	HTML document type
	Link identifier for PREV and NEXT buttons
	Templates and attributes
	REPORT statement considerations
	CONTROL statement considerations
	EZPARAMS/EASYTRAN options
	Field attributes
	HEADING attributes
	REPORT SEQUENCE and performance issues

	Defining field attributes
	Attributes syntax
	Available Attributes
	Attributes
	Default fonts and CSS templates located in SYS1.SFSYDOCS

	Drill Down JCL requirements
	FJIDOC0—Cascading Style Sheet (CSS) library
	ddname for the Drill Down documents
	ddname for the report files
	ddnames for the index/links validator program
	HFS (UNIX files) requirements

	Tailoring the FSYFONTS table
	Running the Drill Down document parser—fsyjpars
	JCYUNIX0 (FSYUNIX0)—Drill Down utility for UNIX files
	JCMUDRL1—Drill Down reports program
	JCMUDRL2—Creates a CSV file and a CSV report
	JCMUDRLU—Drill Down reports and UNIX environment

	Chapter 10. User exits
	End of translating macro exit
	File I/O Exits
	Exit calling conventions
	MODIFY Exits
	Non-MODIFY Exits

	CBLCNVRT macro
	Running a standalone job to do the conversion.
	Coding CBLCNVRT in Easytrieve Plus programs.

	EZTCNVRT macro
	Generating COBOL COPY statements
	System information
	Migration Utility files
	Called by the translated COBOL programs

	Run-time requirements
	Summary of ddnames
	Translator CCL1 preprocessor options
	COPTION parameters

	Chapter 11. Installation and Migration Utility options
	Installation
	Migrating from Version 1

	Tailoring default PROC for the One-Step driver program
	Activating the FSYTPA00 program

	Activating Call Attachment Facility (CAF) for DB2 users
	Generating Dynamic SQL I/O module (FSYSQLIO)
	Using EZTPA00 program loader
	REPORT statement default options
	Mask identifier table to facilitate Easytrieve USERMASK

	Migration Utility translator options
	Embedding options in the program source
	COBOL Compiler PROCESS options

	Chapter 12. Dynamic I/O mode and PDS/PDSE support
	Dynamic I/O mode
	How does it work?
	Dynamic I/O considerations
	Benefits of Dynamic I/O

	Support for PDS/PDSE libraries
	Guidelines for accessing PDS/PDSE libraries

	Chapter 13. Toolkit replacement macros
	Toolkit and date-handling replacement macros
	Macros search sequence

	Enhanced date threshold handling
	Available date masks

	ALPHACON macro: coding rules
	CONVAE macro: coding rules
	CONVEA macro: coding rules
	DATECALC macro: coding rules
	DATECONV macro: coding rules
	DATEVAL macro: coding rules
	DAYSAGO macro: coding rules
	DAYSCALC macro: coding rules
	DIVIDE macro: coding rules
	EXPO macro: coding rules
	GETDATE macro: coding rules
	GETDATEL macro: coding rules
	GETDSN macro: coding rules
	GETJOB macro: coding rules
	GETPARM macro: coding rules
	NUMTEST macro: coding rules
	PARSE macro: coding rules
	RANDOM macro: coding rules
	SQRT macro: coding rules
	UNBYTE macro: coding rules
	WEEKDAY macro: coding rules

	Chapter 14. Messages
	Migration Utility (macro) generated error messages
	Dynamic SQL Translator macro generated messages
	Migration Utility macro generated messages
	Migration Utility function generated messages
	PEngiCCL generated messages
	Parallel testing utility messages
	Runtime I/O error messages
	VSAM I/O error supplemental RPL information

	Appendix. Migration Utility JCL
	JCMUCLGJ—Translate, link and go (no proc)
	JCMUCLGP—Translate, link and go (instream proc)
	JCMUCL1J—Translate and link (no proc)
	JCMUCL1P—Translate and link (instream proc)
	JCMUCL2J—Two-step translate and link without a proc
	JCMUCL2P—Two-step translate and link (instream proc)
	JCMUIMSJ—Sample job for translating IMS/DLI programs
	JCMUSQLJ—Two-step translate, link and bind for SQL
	JCMUSQLP—Two-step translate, link and bind for SQL (using proc)
	JCMUMIG1—Automated conversion engine
	JCMUCNV1—Automated conversion initiation job
	JCMUMIG2—Manual conversion engine with no restart
	#FJICNTL—Control file for JCL adjuster program (FSYMIG00)

	Notices
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

